IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v450y2023ics0096300323001406.html
   My bibliography  Save this article

Hyperbolic linear canonical transforms of quaternion signals and uncertainty

Author

Listed:
  • Morais, J.
  • Ferreira, M.

Abstract

This paper is concerned with Linear Canonical Transforms (LCTs) associated with two-dimensional quaternion-valued signals defined in an open rectangle of the Euclidean plane endowed with a hyperbolic measure, which we call Quaternion Hyperbolic Linear Canonical Transforms (QHLCTs). These transforms are defined by replacing the Euclidean plane wave with a corresponding hyperbolic relativistic plane wave in one dimension multiplied by quadratic modulations in both the hyperbolic spatial and frequency domains, giving the hyperbolic counterpart of the Euclidean LCTs. We prove the fundamental properties of the partial QHLCTs and the right-sided QHLCT by employing hyperbolic geometry tools and establish main results such as the Riemann–Lebesgue Lemma, the Plancherel and Parseval Theorems, and inversion formulas. The analysis is carried out in terms of novel hyperbolic derivative and hyperbolic primitive concepts, which lead to the differentiation and integration properties of the QHLCTs. The results are applied to establish two quaternionic versions of the Heisenberg uncertainty principle for the right-sided QHLCT. These uncertainty principles prescribe a lower bound on the product of the effective widths of quaternion-valued signals in the hyperbolic spatial and frequency domains. It is shown that only hyperbolic Gaussian quaternion functions minimize the uncertainty relations.

Suggested Citation

  • Morais, J. & Ferreira, M., 2023. "Hyperbolic linear canonical transforms of quaternion signals and uncertainty," Applied Mathematics and Computation, Elsevier, vol. 450(C).
  • Handle: RePEc:eee:apmaco:v:450:y:2023:i:c:s0096300323001406
    DOI: 10.1016/j.amc.2023.127971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323001406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.127971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Bie, H. & De Schepper, N. & Ell, T.A. & Rubrecht, K. & Sangwine, S.J., 2015. "Connecting spatial and frequency domains for the quaternion Fourier transform," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 581-593.
    2. Kit Ian Kou & Jian-Yu Ou & Joao Morais, 2013. "On Uncertainty Principle for Quaternionic Linear Canonical Transform," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hehe Yang & Qiang Feng & Xiaoxia Wang & Didar Urynbassarova & Aajaz A. Teali, 2024. "Reduced Biquaternion Windowed Linear Canonical Transform: Properties and Applications," Mathematics, MDPI, vol. 12(5), pages 1-21, March.
    2. Siddiqui Saima & Bingzhao Li & Samad Muhammad Adnan, 2022. "New Sampling Expansion Related to Derivatives in Quaternion Fourier Transform Domain," Mathematics, MDPI, vol. 10(8), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:450:y:2023:i:c:s0096300323001406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.