IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v438y2023ics0096300322006889.html
   My bibliography  Save this article

On the normalized distance laplacian eigenvalues of graphs

Author

Listed:
  • Ganie, Hilal A.
  • Rather, Bilal Ahmad
  • Das, Kinkar Chandra

Abstract

The normalized distance Laplacian matrix (DL-matrix) of a connected graph Γ is defined by DL(Γ)=I−Tr(Γ)−1/2D(Γ)Tr(Γ)−1/2, where D(Γ) is the distance matrix and Tr(Γ) is the diagonal matrix of the vertex transmissions in Γ. In this article, we present interesting spectral properties of DL(Γ)-matrix. We characterize the graphs having exactly two distinct DL-eigenvalues which in turn solves a conjecture proposed in [26]. We characterize the complete multipartite graphs with three distinct DL-eigenvalues. We present the bounds for the DL-spectral radius and the second smallest eigenvalue of DL(Γ)-matrix and identify the candidate graphs attaining them. We also identify the classes of graphs whose second smallest DL-eigenvalue is 1 and relate it with the distance spectrum of such graphs. Further, we introduce the concept of the trace norm (the normalized distance Laplacian energy DLE(Γ) of Γ) of I−DL(Γ). We obtain some bounds and characterize the corresponding extremal graphs.

Suggested Citation

  • Ganie, Hilal A. & Rather, Bilal Ahmad & Das, Kinkar Chandra, 2023. "On the normalized distance laplacian eigenvalues of graphs," Applied Mathematics and Computation, Elsevier, vol. 438(C).
  • Handle: RePEc:eee:apmaco:v:438:y:2023:i:c:s0096300322006889
    DOI: 10.1016/j.amc.2022.127615
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322006889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Xueyi & Das, Kinkar Chandra & Zhu, Shunlai, 2022. "Toughness and normalized Laplacian eigenvalues of graphs," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    2. Sun, Shaowei & Das, Kinkar Ch., 2019. "On the second largest normalized Laplacian eigenvalue of graphs," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 531-541.
    3. Ganie, Hilal A., 2021. "On the distance Laplacian energy ordering of a tree," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rather, Bilal A. & Ganie, Hilal A. & Shang, Yilun, 2023. "Distance Laplacian spectral ordering of sun type graphs," Applied Mathematics and Computation, Elsevier, vol. 445(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:438:y:2023:i:c:s0096300322006889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.