Static and forced vibration analysis of layered piezoelectric functionally graded structures based on element differential method
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2022.127548
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Salazar, R. & Serrano, M. & Abdelkefi, A., 2020. "Fatigue in piezoelectric ceramic vibrational energy harvesting: A review," Applied Energy, Elsevier, vol. 270(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xian, Tongrui & Xu, Yifei & Chen, Chen & Luo, Xiaohui & Zhao, Haixia & Zhang, Yongtao & Shi, Weijie, 2024. "Experimental and theory study on a stacked piezoelectric energy harvester for pressure pulsation in water hydraulic system," Renewable Energy, Elsevier, vol. 225(C).
- Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
- Ma, Xiao & Zhou, Bo & Xue, Shifeng, 2021. "A meshless Hermite weighted least-square method for piezoelectric structures," Applied Mathematics and Computation, Elsevier, vol. 400(C).
- Chengcheng Fu & Cheng Gao & Weifang Zhang, 2024. "RUL Prediction for Piezoelectric Vibration Sensors Based on Digital-Twin and LSTM Network," Mathematics, MDPI, vol. 12(8), pages 1-27, April.
- Ryan Salazar & Ryan Quintana & Abdessattar Abdelkefi, 2021. "Role of Electromechanical Coupling, Locomotion Type and Damping on the Effectiveness of Fish-Like Robot Energy Harvesters," Energies, MDPI, vol. 14(3), pages 1-32, January.
- Manuel Serrano & Kevin Larkin & Sergei Tretiak & Abdessattar Abdelkefi, 2023. "Piezoelectric Energy Harvesting Gyroscopes: Comparative Modeling and Effectiveness," Energies, MDPI, vol. 16(4), pages 1-21, February.
More about this item
Keywords
Strong-form method; Dynamic analysis; Static shape control; Functionally graded materials; Polyvinylidene fluoride;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:437:y:2023:i:c:s0096300322006221. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.