IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v428y2022ics0096300322002648.html
   My bibliography  Save this article

Practical stability of switched homogeneous positive nonlinear systems: Max-separable Lyapunov function method

Author

Listed:
  • Liang, Mengqian
  • Tian, Yazhou

Abstract

The practical stability problem of switched homogeneous positive nonlinear systems (SHPNS) is addressed in this study, which includes two instances in terms of continuous-time and discrete-time. Sufficient conditions are presented by using the max-separable Lyapunov function (MSLF) approach, such that each solution of SHPNS is practically stable. The distinction between the existing results and the obtained results is that ours are not only relatively concise but also easily verifiable, and the theoretical results are also extended to a more general case without restricting the systems to be positive. Eventually, a pair of examples are proposed to explain the approach’s validity.

Suggested Citation

  • Liang, Mengqian & Tian, Yazhou, 2022. "Practical stability of switched homogeneous positive nonlinear systems: Max-separable Lyapunov function method," Applied Mathematics and Computation, Elsevier, vol. 428(C).
  • Handle: RePEc:eee:apmaco:v:428:y:2022:i:c:s0096300322002648
    DOI: 10.1016/j.amc.2022.127190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322002648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuo Li & Zhengrong Xiang, 2017. "Stabilisation of a class of positive switched nonlinear systems under asynchronous switching," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(7), pages 1537-1547, May.
    2. Li, Yanan & Sun, Yuangong & Meng, Fanwei & Tian, Yazhou, 2018. "Exponential stabilization of switched time-varying systems with delays and disturbances," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 131-140.
    3. Jun Cheng & Hong Zhu & Shouming Zhong & Yuping Zhang, 2012. "Robust Stability of Switched Delay Systems with Average Dwell Time under Asynchronous Switching," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-17, October.
    4. Sun, Yuangong & Tian, Yazhou, 2022. "Polynomial stability of positive switching homogeneous systems with different degrees," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    5. Zhang, Jie & Sun, Yuangong, 2021. "Practical exponential stability of discrete-time switched linear positive systems with impulse and all modes unstable," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Yu & Zhang, Niankun & Chen, Guoyong, 2023. "Global exponential stability of impulsive switched positive nonlinear systems with mode-dependent impulses," Applied Mathematics and Computation, Elsevier, vol. 436(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Yu & Zhang, Niankun & Chen, Guoyong, 2023. "Global exponential stability of impulsive switched positive nonlinear systems with mode-dependent impulses," Applied Mathematics and Computation, Elsevier, vol. 436(C).
    2. Zheng, Qunxian & Xu, Shengyuan & Zhang, Zhengqiang, 2020. "Nonfragile H∞ observer design for uncertain nonlinear switched systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    3. Li, Haitao & Xu, Xiaojing & Ding, Xueying, 2019. "Finite-time stability analysis of stochastic switched boolean networks with impulsive effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 557-565.
    4. Jiao, Ticao & Qi, Xiaomei & Jiang, Jishun & Yu, Mingzheng, 2022. "Noise-input-to-state stability analysis of switching stochastic nonlinear systems with mode-dependent multiple impulses," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    5. Göksu, Gökhan & Başer, Ulviye, 2021. "Finite-time stability for switched linear systems by Jordan decomposition," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    6. Yuangong Sun & Zhaorong Wu & Fanwei Meng, 2018. "Common Weak Linear Copositive Lyapunov Functions for Positive Switched Linear Systems," Complexity, Hindawi, vol. 2018, pages 1-7, February.
    7. Guo, Yaxiao & Li, Junmin & Duan, Ruirui, 2021. "Extended dissipativity-based control for persistent dwell-time switched singularly perturbed systems and its application to electronic circuits," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    8. Thanasak Mouktonglang & Suriyon Yimnet, 2021. "Finite-Time Boundedness of Linear Uncertain Switched Positive Time-Varying Delay Systems with Finite-Time Unbounded Subsystems and Exogenous Disturbance," Mathematics, MDPI, vol. 10(1), pages 1-16, December.
    9. Leipo Liu & Hao Xing & Xiangyang Cao & Zhumu Fu & Shuzhong Song, 2018. "Guaranteed Cost Finite-Time Control of Discrete-Time Positive Impulsive Switched Systems," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    10. Deng, Yalin & Zhang, Huasheng & Dai, Yuzhen & Li, Yuanen, 2022. "Interval stability/stabilization for linear stochastic switched systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    11. Li, Jinghan & Zhao, Jun, 2022. "Bumpless transfer based event-triggered control for switched linear systems with state-dependent switching," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    12. Xingao Zhu & Yuangong Sun, 2019. "Reachable Set Bounding for Homogeneous Nonlinear Systems with Delay and Disturbance," Complexity, Hindawi, vol. 2019, pages 1-6, July.
    13. Sun, Yuangong & Tian, Yazhou, 2022. "Polynomial stability of positive switching homogeneous systems with different degrees," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    14. Ju, Yanhao & Sun, Yuangong & Meng, Fanwei, 2020. "Stabilization of switched positive system with impulse and marginally stable subsystems: A mode-dependent dwell time method," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    15. Zhu, Xingao & Liu, Shutang, 2022. "Reachable set estimation for continuous-time impulsive switched nonlinear time-varying systems with delay and disturbance," Applied Mathematics and Computation, Elsevier, vol. 420(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:428:y:2022:i:c:s0096300322002648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.