Compound binomial risk model in a Markovian environment with capital cost and the calculation algorithm
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2022.126969
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gerber, Hans U., 1988. "Mathematical fun with ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 7(1), pages 15-23, January.
- Reinhard, Jean-Marie, 1984. "On a Class of Semi-Markov Risk Models Obtained as Classical Risk Models in a Markovian Environment," ASTIN Bulletin, Cambridge University Press, vol. 14(1), pages 23-43, April.
- Cossette, Helene & Landriault, David & Marceau, Etienne, 2004. "Compound binomial risk model in a markovian environment," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 425-443, October.
- Willmot, Gordon E., 1993. "Ruin probabilities in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 12(2), pages 133-142, April.
- J.M. Reinhard, & Snoussi, M., 2001. "On the Distribution of the Surplus Prior to Ruin in a Discrete Semi-Markov Risk Model," ASTIN Bulletin, Cambridge University Press, vol. 31(2), pages 255-273, November.
- Cheng, Shixue & Gerber, Hans U. & Shiu, Elias S. W., 2000. "Discounted probabilities and ruin theory in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 239-250, May.
- Gerber, Hans U., 1988. "Mathematical Fun with the Compound Binomial Process," ASTIN Bulletin, Cambridge University Press, vol. 18(2), pages 161-168, November.
- Jae-Kyung Woo & Haibo Liu, 2018. "Discounted Aggregate Claim Costs Until Ruin in the Discrete-Time Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1285-1318, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Hu & Zhang, Zhimin & Lan, Chunmei, 2009. "Ruin problems in a discrete Markov risk model," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 21-28, January.
- Chen, Mi & Yuen, Kam Chuen & Guo, Junyi, 2014. "Survival probabilities in a discrete semi-Markov risk model," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 205-215.
- Palmowski, Zbigniew & Ramsden, Lewis & Papaioannou, Apostolos D., 2024. "Gerber-Shiu theory for discrete risk processes in a regime switching environment," Applied Mathematics and Computation, Elsevier, vol. 467(C).
- Marceau, Etienne, 2009. "On the discrete-time compound renewal risk model with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 245-259, April.
- Li, Shuanming & Garrido, José, 2002. "On the time value of ruin in the discrete time risk model," DEE - Working Papers. Business Economics. WB wb021812, Universidad Carlos III de Madrid. Departamento de EconomÃa de la Empresa.
- Pavlova, Kristina P. & Willmot, Gordon E., 2004. "The discrete stationary renewal risk model and the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 267-277, October.
- Bao, Zhenhua & Song, Lixin & Liu, He, 2013. "A note on the inflated-parameter binomial distribution," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1911-1914.
- Liu, Guoxin & Zhao, Jinyan, 2007. "Joint distributions of some actuarial random vectors in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 95-103, January.
- Jae-Kyung Woo & Haibo Liu, 2018. "Discounted Aggregate Claim Costs Until Ruin in the Discrete-Time Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1285-1318, December.
- Claude Lefèvre & Stéphane Loisel, 2008. "On Finite-Time Ruin Probabilities for Classical Risk Models," Post-Print hal-00168958, HAL.
- Constantinescu Corina D. & Kozubowski Tomasz J. & Qian Haoyu H., 2019. "Probability of ruin in discrete insurance risk model with dependent Pareto claims," Dependence Modeling, De Gruyter, vol. 7(1), pages 215-233, January.
- Cossette, Helene & Landriault, David & Marceau, Etienne, 2004. "Exact expressions and upper bound for ruin probabilities in the compound Markov binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 449-466, June.
- David Landriault, 2008. "On a generalization of the expected discounted penalty function in a discrete‐time insurance risk model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(6), pages 525-539, November.
- Liu, Guoxin & Wang, Ying & Zhang, Bei, 2005. "Ruin probability in the continuous-time compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 303-316, June.
- S. X. Liu & J. Y. Guo, 2006. "Discrete Risk Model Revisited," Methodology and Computing in Applied Probability, Springer, vol. 8(2), pages 303-313, June.
- Tan, Jiyang & Yang, Xiangqun, 2006. "The compound binomial model with randomized decisions on paying dividends," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 1-18, August.
- Kam Pui Wat & Kam Chuen Yuen & Wai Keung Li & Xueyuan Wu, 2018. "On the Compound Binomial Risk Model with Delayed Claims and Randomized Dividends," Risks, MDPI, vol. 6(1), pages 1-13, January.
- Cossette, Helene & Landriault, David & Marceau, Etienne, 2004. "Compound binomial risk model in a markovian environment," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 425-443, October.
- Dutang, C. & Lefèvre, C. & Loisel, S., 2013.
"On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing,"
Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
- Christophe Dutang & C. Lefevre & S. Loisel, 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Post-Print hal-01616175, HAL.
- Christophe Dutang & Claude Lefèvre & Stéphane Loisel, 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Post-Print hal-00746251, HAL.
- Cheng, Shixue & Gerber, Hans U. & Shiu, Elias S. W., 2000. "Discounted probabilities and ruin theory in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 239-250, May.
More about this item
Keywords
Markovian environment; Compound binomial risk model; Interest rate; Recursive equation; Conditional ruin probabilities; Calculation algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:424:y:2022:i:c:s0096300322000558. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.