IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v411y2021ics0096300321006111.html
   My bibliography  Save this article

Complex mixed-mode vibration types triggered by the pitchfork bifurcation delay in a driven van der Pol-Duffing oscillator

Author

Listed:
  • Ma, Xindong
  • Yu, Yue
  • Wang, Lifeng

Abstract

The intent of this work is to explore the generation mechanism of four mixed-mode vibration types triggered by the pitchfork bifurcation delay phenomenon in a driven van der Pol-Duffing oscillator. The four mixed-mode vibration types can be named “delayed sup-pitchfork/sup-Hopf” type for Homoclinic connection, symmetric “delayed sup-pitchfork/sup-Hopf” type, “point/point” type for delayed sup-pitchfork and “delayed sup-pitchfork/delayed Homoclinic” type, respectively. Our study proves that the pitchfork bifurcation delay phenomenon deserves a prominent role in the occurrence of the four mixed-mode vibration types, which enriches the dynamical behaviors of the bifurcation delay phenomenon as well as the possible routes to mixed-mode vibrations.

Suggested Citation

  • Ma, Xindong & Yu, Yue & Wang, Lifeng, 2021. "Complex mixed-mode vibration types triggered by the pitchfork bifurcation delay in a driven van der Pol-Duffing oscillator," Applied Mathematics and Computation, Elsevier, vol. 411(C).
  • Handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321006111
    DOI: 10.1016/j.amc.2021.126522
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321006111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Changjin & Liao, Maoxin & Li, Peiluan & Guo, Ying & Xiao, Qimei & Yuan, Shuai, 2019. "Influence of multiple time delays on bifurcation of fractional-order neural networks," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 565-582.
    2. T. M. Hoang & M. Anquez & B. A. Robbins & X. Y. Yang & B. J. Land & C. D. Hamley & M. S. Chapman, 2016. "Parametric excitation and squeezing in a many-body spinor condensate," Nature Communications, Nature, vol. 7(1), pages 1-8, September.
    3. Xu, Changjin & Liu, Zixin & Liao, Maoxin & Li, Peiluan & Xiao, Qimei & Yuan, Shuai, 2021. "Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 471-494.
    4. Bilazeroğlu, Ş. & Merdan, H., 2021. "Hopf bifurcations in a class of reaction-diffusion equations including two discrete time delays: An algorithm for determining Hopf bifurcation, and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Jian & Liu, Shenquan & Wen, Qixiang, 2022. "Geometric analysis of the spontaneous electrical activity in anterior pituitary corticotrophs," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Chun Zhang & Qiaoxia Tang, 2022. "Complex Periodic Mixed-Mode Oscillation Patterns in a Filippov System," Mathematics, MDPI, vol. 10(5), pages 1-11, February.
    3. Surendar, R. & Muthtamilselvan, M. & Ahn, Kyubok, 2024. "Stochastic disturbance with finite-time chaos stabilization and synchronization for a fractional-order nonautonomous hybrid nonlinear complex system via a sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Danjin Zhang & Youhua Qian, 2023. "Bursting Oscillations in General Coupled Systems: A Review," Mathematics, MDPI, vol. 11(7), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wenlong & Lin, Xiao & Zhang, Chunrui, 2021. "Resonant bifurcation of feed-forward chains and application in image contrast enhancement," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 294-307.
    2. Xu, Changjin & Liu, Zixin & Liao, Maoxin & Li, Peiluan & Xiao, Qimei & Yuan, Shuai, 2021. "Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 471-494.
    3. Li, Shuai & Huang, Chengdai & Song, Xinyu, 2023. "Detection of Hopf bifurcations induced by pregnancy and maturation delays in a spatial predator–prey model via crossing curves method," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Xu, Changjin & Liu, Zixin & Yao, Lingyun & Aouiti, Chaouki, 2021. "Further exploration on bifurcation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    5. Shang, Weiying & Zhang, Weiwei & Chen, Dingyuan & Cao, Jinde, 2023. "New criteria of finite time synchronization of fractional-order quaternion-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 436(C).
    6. Du, Wentong & Xiao, Min & Ding, Jie & Yao, Yi & Wang, Zhengxin & Yang, Xinsong, 2023. "Fractional-order PD control at Hopf bifurcation in a delayed predator–prey system with trans-species infectious diseases," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 414-438.
    7. Matsumoto, Akio & Szidarovszky, Ferenc, 2020. "Stability switching curves in a Lotka–Volterra competition system with two delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 422-438.
    8. Shafiya, M. & Nagamani, G. & Dafik, D., 2022. "Global synchronization of uncertain fractional-order BAM neural networks with time delay via improved fractional-order integral inequality," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 168-186.
    9. Hu Zhang & Anwar Zeb & Aying Wan & Zizhen Zhang, 2022. "Bifurcation Analysis of a Synthetic Drug Transmission Model with Two Time Delays," Mathematics, MDPI, vol. 10(9), pages 1-21, May.
    10. Bilazeroğlu, Ş. & Göktepe, S. & Merdan, H., 2023. "Effects of the random walk and the maturation period in a diffusive predator–prey system with two discrete delays," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    11. Qian, Jiamin & Chen, Lincong, 2021. "Stochastic P-bifurcation analysis of a novel type of unilateral vibro-impact vibration system," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    12. Lee, S.H. & Park, M.J. & Kwon, O.M. & Choi, S.G., 2022. "Less conservative stability criteria for general neural networks through novel delay-dependent functional," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    13. Yao, Wei & Wang, Chunhua & Sun, Yichuang & Zhou, Chao & Lin, Hairong, 2020. "Exponential multistability of memristive Cohen-Grossberg neural networks with stochastic parameter perturbations," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    14. Syed Ali, M. & Narayanan, G. & Saroha, Sumit & Priya, Bandana & Thakur, Ganesh Kumar, 2021. "Finite-time stability analysis of fractional-order memristive fuzzy cellular neural networks with time delay and leakage term," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 468-485.
    15. Wang, Yangling & Cao, Jinde & Huang, Chengdai, 2022. "Exploration of bifurcation for a fractional-order BAM neural network with n+2 neurons and mixed time delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321006111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.