IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v410y2021ics0096300321005361.html
   My bibliography  Save this article

Approximate solution of stochastic Volterra integro-differential equations by using moving least squares scheme and spectral collocation method

Author

Listed:
  • Mirzaee, Farshid
  • Solhi, Erfan
  • Naserifar, Shiva

Abstract

In this paper, an attractive idea using moving least squares (MLS) and spectral collocation method is extended to estimate the solution of nonlinear stochastic Volterra integro-differential equations (NSVIDEs) that arise in mathematical modeling of natural systems in financial mathematics, physics, and engineering. An essential advantage of the proposed technique is that it does not require any preprocessing, such as mesh refinement. Another advantage that may be appealing to the readers of this article is that acceptable results can be obtained using a small number of points and basis functions, so the calculations are reduced. Applying the proposed scheme leads to the conversion of the problem into a system of algebraic equations. An error bound is presented to ensure the convergence and reliability of the method. Some illustrative examples are presented to reveal the efficiency and applicability of this technique.

Suggested Citation

  • Mirzaee, Farshid & Solhi, Erfan & Naserifar, Shiva, 2021. "Approximate solution of stochastic Volterra integro-differential equations by using moving least squares scheme and spectral collocation method," Applied Mathematics and Computation, Elsevier, vol. 410(C).
  • Handle: RePEc:eee:apmaco:v:410:y:2021:i:c:s0096300321005361
    DOI: 10.1016/j.amc.2021.126447
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321005361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heydari, M.H. & Avazzadeh, Z. & Mahmoudi, M.R., 2019. "Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variable-order fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 105-124.
    2. Peng Hu & Chengming Huang, 2014. "The Stochastic -Method for Nonlinear Stochastic Volterra Integro-Differential Equations," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, P.K. & Saha Ray, S., 2023. "An efficient numerical method based on Lucas polynomials to solve multi-dimensional stochastic Itô-Volterra integral equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 826-845.
    2. Ahmadinia, M. & Afshariarjmand, H. & Salehi, M., 2023. "Numerical solution of multi-dimensional Itô Volterra integral equations by the second kind Chebyshev wavelets and parallel computing process," Applied Mathematics and Computation, Elsevier, vol. 450(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoudi, Mohammad Reza, 2021. "A computational technique to classify several fractional Brownian motion processes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Rahimkhani, P. & Ordokhani, Y., 2022. "Chelyshkov least squares support vector regression for nonlinear stochastic differential equations by variable fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    3. Eftekhari, Tahereh & Rashidinia, Jalil, 2022. "A novel and efficient operational matrix for solving nonlinear stochastic differential equations driven by multi-fractional Gaussian noise," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    4. Mahmoudi, Mohammad Reza & Baleanu, Dumitru & Mansor, Zulkefli & Tuan, Bui Anh & Pho, Kim-Hung, 2020. "Fuzzy clustering method to compare the spread rate of Covid-19 in the high risks countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. P. K. Singh & S. Saha Ray, 2024. "A Collocation Method for Nonlinear Stochastic Differential Equations Driven by Fractional Brownian Motion and its Application to Mathematical Finance," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-23, June.
    6. Heydari, M.H., 2020. "Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana–Baleanu–Caputo variable-order fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:410:y:2021:i:c:s0096300321005361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.