IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v397y2021ics0096300320307712.html
   My bibliography  Save this article

A solution of the conjecture about big vertices of minimal-ABC trees

Author

Listed:
  • Dimitrov, Darko
  • Du, Zhibin

Abstract

The problem of full determination of trees with a minimal value of the ABC index is very hard and famous in mathematical chemistry. A well-known conjecture is that the big vertices (vertices of degree larger than 2, which are not adjacent to a vertex of degree 2) of a tree with a minimal value of the ABC index induce a star graph. Here we give an affirmative answer to this conjecture and thus make a significant step towards the complete characterization of trees with minimal ABC index.

Suggested Citation

  • Dimitrov, Darko & Du, Zhibin, 2021. "A solution of the conjecture about big vertices of minimal-ABC trees," Applied Mathematics and Computation, Elsevier, vol. 397(C).
  • Handle: RePEc:eee:apmaco:v:397:y:2021:i:c:s0096300320307712
    DOI: 10.1016/j.amc.2020.125818
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320307712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitrov, Darko, 2017. "On structural properties of trees with minimal atom-bond connectivity index IV: Solving a conjecture about the pendent paths of length three," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 418-430.
    2. Dimitrov, Darko & Du, Zhibin & da Fonseca, Carlos M., 2016. "On structural properties of trees with minimal atom-bond connectivity index III: Trees with pendent paths of length three," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 276-290.
    3. Lin, Wenshui & Chen, Jianfeng & Wu, Zhixi & Dimitrov, Darko & Huang, Linshan, 2018. "Computer search for large trees with minimal ABC index," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 221-230.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Jianwei & Sun, Xiaoling, 2024. "On bond incident degree index of chemical trees with a fixed order and a fixed number of leaves," Applied Mathematics and Computation, Elsevier, vol. 464(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Wenshui & Chen, Jianfeng & Wu, Zhixi & Dimitrov, Darko & Huang, Linshan, 2018. "Computer search for large trees with minimal ABC index," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 221-230.
    2. Chen, Xiaodan & Li, Xiuyu & Lin, Wenshui, 2021. "On connected graphs and trees with maximal inverse sum indeg index," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    3. Shao, Zehui & Wu, Pu & Gao, Yingying & Gutman, Ivan & Zhang, Xiujun, 2017. "On the maximum ABC index of graphs without pendent vertices," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 298-312.
    4. Yu Yang & Long Li & Wenhu Wang & Hua Wang, 2020. "On BC-Subtrees in Multi-Fan and Multi-Wheel Graphs," Mathematics, MDPI, vol. 9(1), pages 1-29, December.
    5. Dimitrov, Darko, 2017. "On structural properties of trees with minimal atom-bond connectivity index IV: Solving a conjecture about the pendent paths of length three," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 418-430.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:397:y:2021:i:c:s0096300320307712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.