IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v396y2021ics0096300320308845.html
   My bibliography  Save this article

Numerical algorithm based on extended barycentric Lagrange interpolant for two dimensional integro-differential equations

Author

Listed:
  • Liu, Hongyan
  • Huang, Jin
  • Zhang, Wei

Abstract

The barycentric form of Lagrange interpolant is attractive due to its stability, fast convergent rate, high precision and so on. In this paper, we applies an algorithm based on two dimensional extension of barycentric Lagrange interpolant for solving two dimensional integro-differential equations (2D-IDEs) numerically. First, the solution of the 2D-IDEs is replaced by the extended two dimensional barycentric Lagrange interpolant which is constructed by tensor product nodes, the set of differential operators is discretized by the differential matrix of barycentric interpolant, the double integral is approximated by an extended Gauss-type quadrature formula and the boundary conditions are treated by the substitute method. Then the solution of the 2D-IDEs is transformed into the solution of the corresponding system of algebraic equations. The error estimation and convergence analysis are also discussed. Last, several numerical examples are given to demonstrate the merits of the current method.

Suggested Citation

  • Liu, Hongyan & Huang, Jin & Zhang, Wei, 2021. "Numerical algorithm based on extended barycentric Lagrange interpolant for two dimensional integro-differential equations," Applied Mathematics and Computation, Elsevier, vol. 396(C).
  • Handle: RePEc:eee:apmaco:v:396:y:2021:i:c:s0096300320308845
    DOI: 10.1016/j.amc.2020.125931
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320308845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125931?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hongchun Wu & Yulan Wang & Wei Zhang, 2018. "Numerical Solution of a Class of Nonlinear Partial Differential Equations by Using Barycentric Interpolation Collocation Method," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-10, December.
    2. Rama Cont & Ekaterina Voltchkova, 2005. "Integro-differential equations for option prices in exponential Lévy models," Finance and Stochastics, Springer, vol. 9(3), pages 299-325, July.
    3. Rohaninasab, N. & Maleknejad, K. & Ezzati, R., 2018. "Numerical solution of high-order Volterra–Fredholm integro-differential equations by using Legendre collocation method," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 171-188.
    4. Liu, Hongyan & Huang, Jin & Zhang, Wei & Ma, Yanying, 2019. "Meshfree approach for solving multi-dimensional systems of Fredholm integral equations via barycentric Lagrange interpolation," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 295-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiwu Zhou & Julián Alcalá & Víctor Yepes, 2022. "Research on Sustainable Development of the Regional Construction Industry Based on Entropy Theory," Sustainability, MDPI, vol. 14(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas Gonon & Christoph Schwab, 2021. "Deep ReLU network expression rates for option prices in high-dimensional, exponential Lévy models," Finance and Stochastics, Springer, vol. 25(4), pages 615-657, October.
    2. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    3. Peter K. Friz & Stefan Gerhold & Marc Yor, 2013. "How to make Dupire's local volatility work with jumps," Papers 1302.5548, arXiv.org.
    4. Jose Cruz & Maria Grossinho & Daniel Sevcovic & Cyril Izuchukwu Udeani, 2022. "Linear and Nonlinear Partial Integro-Differential Equations arising from Finance," Papers 2207.11568, arXiv.org.
    5. Hainaut, Donatien & Leonenko, Nikolai, 2020. "Option pricing in illiquid markets: a fractional jump-diffusion approach," LIDAM Discussion Papers ISBA 2020003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Kathrin Glau, 2015. "Feynman-Kac formula for L\'evy processes with discontinuous killing rate," Papers 1502.07531, arXiv.org, revised Nov 2015.
    7. Nemat Safarov & Colin Atkinson, 2017. "Natural Gas-Fired Power Plants Valuation And Optimization Under Lévy Copulas And Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-38, February.
    8. Andrey Itkin & Dmitry Muravey, 2023. "American options in time-dependent one-factor models: Semi-analytic pricing, numerical methods and ML support," Papers 2307.13870, arXiv.org.
    9. Nemat Safarov & Colin Atkinson, 2016. "Natural gas-fired power plants valuation and optimisation under Levy copulas and regime-switching," Papers 1607.01207, arXiv.org, revised Jul 2016.
    10. Frank Bosserhoff & Mitja Stadje, 2019. "Robustness of Delta Hedging in a Jump-Diffusion Model," Papers 1910.08946, arXiv.org, revised Apr 2022.
    11. Aziz Issaka & Indranil SenGupta, 2017. "Analysis of variance based instruments for Ornstein–Uhlenbeck type models: swap and price index," Annals of Finance, Springer, vol. 13(4), pages 401-434, November.
    12. Bergenthum Jan & Rüschendorf Ludger, 2008. "Comparison results for path-dependent options," Statistics & Risk Modeling, De Gruyter, vol. 26(1), pages 53-72, March.
    13. Ross A. Maller & David H. Solomon & Alex Szimayer, 2006. "A Multinomial Approximation For American Option Prices In Lévy Process Models," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 613-633, October.
    14. Denis Belomestny & Markus Reiß, 2006. "Spectral calibration of exponential Lévy models," Finance and Stochastics, Springer, vol. 10(4), pages 449-474, December.
    15. Baurdoux, Erik J. & Pedraza, José M., 2024. "Lp optimal prediction of the last zero of a spectrally negative Lévy process," LSE Research Online Documents on Economics 119468, London School of Economics and Political Science, LSE Library.
    16. Kathrin Glau, 2016. "A Feynman–Kac-type formula for Lévy processes with discontinuous killing rates," Finance and Stochastics, Springer, vol. 20(4), pages 1021-1059, October.
    17. Daniel Sevcovic & Cyril Izuchukwu Udeani, 2021. "Multidimensional linear and nonlinear partial integro-differential equation in Bessel potential spaces with applications in option pricing," Papers 2106.10498, arXiv.org.
    18. Gapeev, Pavel V., 2006. "Perpetual barrier options in jump-diffusion models," SFB 649 Discussion Papers 2006-058, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Ariel Neufeld & Philipp Schmocker & Sizhou Wu, 2024. "Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs," Papers 2405.05192, arXiv.org, revised Sep 2024.
    20. Jakob Sohl & Mathias Trabs, 2012. "Option calibration of exponential L\'evy models: Confidence intervals and empirical results," Papers 1202.5983, arXiv.org, revised Oct 2012.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:396:y:2021:i:c:s0096300320308845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.