IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v396y2021ics0096300320308821.html
   My bibliography  Save this article

Anti-disturbance control for dynamic positioning system of ships with disturbances

Author

Listed:
  • Zhang, Huifeng
  • Wei, Xinjiang
  • Wei, Yongli
  • Hu, Xin

Abstract

A robust anti-disturbance control (RADC) strategy is investigated for the ship dynamic positioning (DP) systems with unknown time-varying disturbances. The disturbances are brought about by wind, second-order wave drift, ocean currents as well as unmodeled dynamics, which are modelled by the first-order Markov process. The disturbance observer (DO) is established to online estimate disturbances. Then, the anti-disturbance controller for the ship DP system is designed and the stability analysis of the composite system is presented by using stochastic stability theory. The DOBC and the pole placement methods are implemented to improve the robustness against ocean environmental disturbances. The unknown time-varying disturbances can be attenuated such that the yaw angle and position of the ship reach the desired value with high accuracy. Finally, simulation on a supply ship is given to illustrate the validity of the proposed control strategy.

Suggested Citation

  • Zhang, Huifeng & Wei, Xinjiang & Wei, Yongli & Hu, Xin, 2021. "Anti-disturbance control for dynamic positioning system of ships with disturbances," Applied Mathematics and Computation, Elsevier, vol. 396(C).
  • Handle: RePEc:eee:apmaco:v:396:y:2021:i:c:s0096300320308821
    DOI: 10.1016/j.amc.2020.125929
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320308821
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qi, Wenhai & Kao, Yonggui & Gao, Xianwen & Wei, Yunliang, 2018. "Controller design for time-delay system with stochastic disturbance and actuator saturation via a new criterion," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 535-546.
    2. Xu, Tianbo & Gao, Xianwen & Qi, Wenhai & Wei, Yunliang, 2019. "Disturbance-observer-based control for semi-Markovian jump systems with generally uncertain transition rate and saturation nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    3. Mou Chen & Bin Jiang, 2013. "Adaptive control and constrained control allocation for overactuated ocean surface vessels," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(12), pages 2295-2309.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Lijun & Chen, Mou & Li, Tao, 2022. "Disturbance observer-based robust coordination control for unmanned autonomous helicopter slung-load system via coupling analysis method," Applied Mathematics and Computation, Elsevier, vol. 427(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussain, Muntazir & Rehan, Muhammad & Ahmed, Shakeel & Abbas, Tanveer & Tufail, Muhammad, 2020. "A novel approach for static anti-windup compensation of one-sided Lipschitz systems under input saturation," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    2. Jiao, Shiyu & Shen, Hao & Wei, Yunliang & Huang, Xia & Wang, Zhen, 2018. "Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 338-350.
    3. Shen, Zixiang & Li, Chuandong & Li, Hongfei & Cao, Zhengran, 2019. "Estimation of the domain of attraction for discrete-time linear impulsive control systems with input saturation," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    4. Zuo, Zhiqiang & Xie, Pengfei & Wang, Yijing, 2020. "Output-based dynamic event-triggering control for sensor saturated systems with external disturbance," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    5. Xu, Tianbo & Gao, Xianwen & Qi, Wenhai & Wei, Yunliang, 2019. "Disturbance-observer-based control for semi-Markovian jump systems with generally uncertain transition rate and saturation nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    6. Li, Rongchang & Zhang, Qingling, 2018. "Robust H∞ sliding mode observer design for a class of Takagi–Sugeno fuzzy descriptor systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 158-178.
    7. Xu, Tianbo & Zhu, Chunxia & Qi, Wenhai & Cheng, Jun & Shi, Kaibo & Sun, Liangliang, 2022. "Passive analysis and finite-time anti-disturbance control for semi-Markovian jump fuzzy systems with saturation and uncertainty," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    8. Li, Lei & Qi, Wenhai & Chen, Xiaoming & Kao, Yonggui & Gao, Xianwen & Wei, Yunliang, 2018. "Stability analysis and control synthesis for positive semi-Markov jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 363-375.
    9. Yongming Li & Shaocheng Tong, 2016. "Adaptive fuzzy switched control design for uncertain nonholonomic systems with input nonsmooth constraint," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(14), pages 3436-3446, October.
    10. Huang, Jun & Yang, Lin & Trinh, Hieu, 2021. "Robust control for incremental quadratic constrained nonlinear time-delay systems subject to actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    11. Ren, Yong & Li, Kun & Ye, Hui, 2020. "Modeling and anti-swing control for a helicopter slung-load system," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    12. Pan Zhang & Xuzhi Lai & Yawu Wang & Min Wu, 2017. "Effective position–posture control strategy based on switching control for planar three-link underactuated mechanical system," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(10), pages 2202-2211, July.
    13. Zhang, Tu & Li, Liwei & Shen, Mouquan, 2021. "Interval observer-based finite-time control for linear parameter-varying systems," Applied Mathematics and Computation, Elsevier, vol. 411(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:396:y:2021:i:c:s0096300320308821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.