IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v386y2020ics0096300320304069.html
   My bibliography  Save this article

Effects of strategy-updating cost on evolutionary spatial prisoner’s dilemma game

Author

Listed:
  • Liu, Run-Ran
  • Jia, Chun-Xiao
  • Rong, Zhihai

Abstract

Strategy-updating rules play fundamental roles for the persistence of cooperation in groups composed by selfish individuals. In this paper, we study the spatial evolutionary prisoner’s dilemma game with the introduction of the strategy-updating cost for players, where each player is able to update its strategy if its payoffs is greater than a critical threshold. We show that there exist sudden increases of cooperation level as the temptation to defect increases for a fixed strategy-updating cost, which means a larger temptation to defect cannot always inveigle players into defection, but sometimes promote players to cooperate. This striking phenomenon is in contradiction with the previous wide cognition that a larger temptation to defect always gives rise to a lower cooperation level. This abnormal phenomenon can be explained by a systematic analysis of the payoffs earned by cooperators and defectors and the strategy-transition probabilities between cooperation and defection, respectively. In some cases, the strategy-updating cost can prevent some defectors from becoming cooperators and the increase of temptation to defect enable their payoffs to exceed the threshold of strategy-updating cost. Our results prove that the temptation to defect may have facilitation to the emergence of cooperation in the existence of strategy-updating cost, and thus provide a new understanding of the previously hidden roles of the temptation to defect for the social cooperation.

Suggested Citation

  • Liu, Run-Ran & Jia, Chun-Xiao & Rong, Zhihai, 2020. "Effects of strategy-updating cost on evolutionary spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304069
    DOI: 10.1016/j.amc.2020.125445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320304069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szolnoki, Attila & Perc, Matjaž & Danku, Zsuzsa, 2008. "Towards effective payoffs in the prisoner’s dilemma game on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2075-2082.
    2. Huang, Keke & Liu, Yishun & Zhang, Yichi & Yang, Chunhua & Wang, Zhen, 2018. "Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 234-240.
    3. Mark R. Rosenzweig, 2012. "Thinking Small: Poor Economics: A Radical Rethinking of the Way to Fight Global Poverty : Review Essay," Journal of Economic Literature, American Economic Association, vol. 50(1), pages 115-127, March.
    4. Li, Yumeng & Wang, Hanchen & Du, Wenbo & Perc, Matjaž & Cao, Xianbin & Zhang, Jun, 2019. "Resonance-like cooperation due to transaction costs in the prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 248-257.
    5. K. M. Ariful Kabir & Jun Tanimoto & Zhen Wang, 2018. "Influence of bolstering network reciprocity in the evolutionary spatial Prisoner’s Dilemma game: a perspective," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(12), pages 1-10, December.
    6. Liu, Run-Ran & Jia, Chun-Xiao & Rong, Zhihai, 2019. "Effects of enhancement level on evolutionary public goods game with payoff aspirations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 242-248.
    7. Wu, Zhi-Xi & Guan, Jian-Yue & Xu, Xin-Jian & Wang, Ying-Hai, 2007. "Evolutionary prisoner's dilemma game on Barabási–Albert scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 672-680.
    8. Higor Y. D. Sigaki & Matjaz Perc & Haroldo V. Ribeiro, 2019. "Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market," Papers 1901.04967, arXiv.org.
    9. Johan J Bolhuis & Gillian R Brown & Robert C Richardson & Kevin N Laland, 2011. "Darwin in Mind: New Opportunities for Evolutionary Psychology," Working Papers id:4376, eSocialSciences.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chaoqian & Huang, Chaochao & Pan, Qiuhui & He, Mingfeng, 2022. "Modeling the social dilemma of involution on a square lattice," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Gao, Liyan & Pan, Qiuhui & He, Mingfeng, 2021. "Environmental-based defensive promotes cooperation in the prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    3. Quan, Ji & Dong, Xu & Wang, Xianjia, 2022. "Rational conformity behavior in social learning promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 425(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Chun-Xiao & Liu, Run-Ran, 2022. "A moderate self-interest preference promotes cooperation in spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    2. Mao, Yajun & Rong, Zhihai & Wu, Zhi-Xi, 2021. "Effect of collective influence on the evolution of cooperation in evolutionary prisoner’s dilemma games," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    3. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    4. Yongkui Liu & Xiaojie Chen & Lin Zhang & Long Wang & Matjaž Perc, 2012. "Win-Stay-Lose-Learn Promotes Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    5. Wang, Chaoqian & Szolnoki, Attila, 2023. "Inertia in spatial public goods games under weak selection," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    6. Li, Gang & Jin, Xiao-Gang & Song, Zhi-Huan, 2012. "Evolutionary game on a stochastic growth network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6664-6673.
    7. Liang, Rizhou & Zhang, Jiqiang & Zheng, Guozhong & Chen, Li, 2021. "Social hierarchy promotes the cooperation prevalence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    8. Xu, Zhixiong & Xu, Zhehang & Zhang, Wei & Han, Xiao-Pu & Meng, Fanyuan, 2024. "Memory-based spatial evolutionary prisoner’s dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    9. Song, Fanpeng & Wu, Jianliang & Fan, Suohai & Jing, Fei, 2020. "Transcendental behavior and disturbance behavior favor human development," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    10. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Group-size dependent synergy in heterogeneous populations," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    11. Chunyan Zhang & Jianlei Zhang & Guangming Xie & Long Wang & Matjaž Perc, 2011. "Evolution of Interactions and Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-7, October.
    12. Takesue, Hirofumi, 2019. "Effects of updating rules on the coevolving prisoner’s dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 399-408.
    13. Han, Xu & Zhao, Xiaowei & Xia, Haoxiang, 2021. "Evolution of cooperation through aspiration-based adjustment of interaction range in spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    14. Szolnoki, Attila & Chen, Xiaojie, 2020. "Gradual learning supports cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    15. Wang, Xianjia & Lv, Shaojie, 2019. "The roles of particle swarm intelligence in the prisoner’s dilemma based on continuous and mixed strategy systems on scale-free networks," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 213-220.
    16. Gao, Liyan & Pan, Qiuhui & He, Mingfeng, 2020. "Changeable updating rule promotes cooperation in well-mixed and structured populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    17. Takesue, Hirofumi, 2021. "Symmetry breaking in the prisoner’s dilemma on two-layer dynamic multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    18. Li, Cong & Xu, Hedong & Fan, Suohai, 2020. "Synergistic effects of self-optimization and imitation rules on the evolution of cooperation in the investor sharing game," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    19. Xie, Yunya & Bai, Yu & Zhang, Yankun & Peng, Zhengyin, 2024. "Trust-induced cooperation under the complex interaction of networks and emotions," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    20. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.