IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v354y2019icp189-191.html
   My bibliography  Save this article

A discrete-time dynamical system with four types of codimension-one bifurcations

Author

Listed:
  • Monteiro, L.H.A.

Abstract

Usually, several discrete-time difference equations are shown in introductory courses on dynamical systems theory, in order to illustrate the occurrence of the most common bifurcations, which are saddle-node, transcritical, pitchfork, and flip. For instance, transcritical and flip bifurcations are found in the well-known logistic map. Here, a first-order difference equation undergoing these four types of bifurcations is presented. The bifurcation diagram is analytically derived and the rationale behind the construction of this equation is explained. The main goal of this didactic work is to give tips on how to write difference equations exhibiting various types of bifurcations, which can be associated with real-world scenarios.

Suggested Citation

  • Monteiro, L.H.A., 2019. "A discrete-time dynamical system with four types of codimension-one bifurcations," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 189-191.
  • Handle: RePEc:eee:apmaco:v:354:y:2019:i:c:p:189-191
    DOI: 10.1016/j.amc.2019.02.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319301389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.02.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shaoli & Rong, Libin & Wu, Jianhong, 2016. "Bistability and multistability in opinion dynamics models," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 388-395.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qesmi, Redouane, 2021. "Hopf bifurcation in an opinion model with state-dependent delay," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    2. Kareeva, Yulia & Sedakov, Artem & Zhen, Mengke, 2023. "Influence in social networks with stubborn agents: From competition to bargaining," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    3. Charcon, D.Y. & Monteiro, L.H.A., 2020. "A multi-agent system to predict the outcome of a two-round election," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    4. Lachowicz, Mirosław & Leszczyński, Henryk & Topolski, Krzysztof A., 2019. "Self-organization with small range interactions: Equilibria and creation of bipolarity," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 156-166.
    5. Qesmi, Redouane, 2021. "Dynamics of an opinion model with threshold-type delay," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Han, Wenchen & Feng, Yuee & Qian, Xiaolan & Yang, Qihui & Huang, Changwei, 2020. "Clusters and the entropy in opinion dynamics on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:354:y:2019:i:c:p:189-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.