IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v386y2020ics0096300320304409.html
   My bibliography  Save this article

A multi-agent system to predict the outcome of a two-round election

Author

Listed:
  • Charcon, D.Y.
  • Monteiro, L.H.A.

Abstract

Here, an agent-based model is developed to forecast the outcome of a three-party election in a two-round voting system. The vote of each agent is determined from four variables related to economic indicators, quality of public services, ethical conduct of the current administration, and political profile of the voting population. In addition, each agent can be influenced by the opinion of the nearest neighbors. Numerical simulations are performed to investigate how these variables affect the elected candidate. The proposed model is also used to reproduce the presidential elections held in Brazil in 2010 and in Uruguay in 2019.

Suggested Citation

  • Charcon, D.Y. & Monteiro, L.H.A., 2020. "A multi-agent system to predict the outcome of a two-round election," Applied Mathematics and Computation, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304409
    DOI: 10.1016/j.amc.2020.125481
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320304409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125481?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Correale, T.G. & Monteiro, L.H.A., 2016. "On the dynamics of axonal membrane: Ion channel as the basic unit of a deterministic model," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 292-302.
    2. Gersbach, Hans & Muller, Philippe & Tejada, Oriol, 2019. "Costs of change and political polarization," European Journal of Political Economy, Elsevier, vol. 60(C).
    3. Wang, Shaoli & Rong, Libin & Wu, Jianhong, 2016. "Bistability and multistability in opinion dynamics models," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 388-395.
    4. Galam, Serge & Jacobs, Frans, 2007. "The role of inflexible minorities in the breaking of democratic opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 366-376.
    5. Li, Mingwu & Dankowicz, Harry, 2019. "Impact of temporal network structures on the speed of consensus formation in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1355-1370.
    6. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    7. Patrick Sturgis & Jouni Kuha & Nick Baker & Mario Callegaro & Stephen Fisher & Jane Green & Will Jennings & Benjamin E. Lauderdale & Patten Smith, 2018. "An assessment of the causes of the errors in the 2015 UK general election opinion polls," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 757-781, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Wenchen & Gao, Shun & Huang, Changwei & Yang, Junzhong, 2022. "Non-consensus states in circular opinion model with repulsive interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    2. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Alternating rotation of coordinated and anti-coordinated action due to environmental feedback and noise," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Huang, Changwei & Bian, Huanyu & Han, Wenchen, 2024. "Breaking the symmetry neutralizes the extremization under the repulsion and higher order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    2. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    3. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    4. Qian, Shen & Liu, Yijun & Galam, Serge, 2015. "Activeness as a key to counter democratic balance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 187-196.
    5. Verma, Gunjan & Swami, Ananthram & Chan, Kevin, 2014. "The impact of competing zealots on opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 310-331.
    6. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    7. Shin, J.K., 2010. "Tipping news in information accumulation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2118-2126.
    8. Balankin, Alexander S. & Martínez Cruz, Miguel Ángel & Martínez, Alfredo Trejo, 2011. "Effect of initial concentration and spatial heterogeneity of active agent distribution on opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3876-3887.
    9. Han, Wenchen & Feng, Yuee & Qian, Xiaolan & Yang, Qihui & Huang, Changwei, 2020. "Clusters and the entropy in opinion dynamics on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    10. Martins, André C.R., 2022. "Extremism definitions in opinion dynamics models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    11. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    12. Kareeva, Yulia & Sedakov, Artem & Zhen, Mengke, 2023. "Influence in social networks with stubborn agents: From competition to bargaining," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    13. Wang, Chaoqian, 2021. "Opinion dynamics with bilateral propaganda and unilateral information blockade," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    14. Si, Xia-Meng & Liu, Yun & Xiong, Fei & Zhang, Yan-Chao & Ding, Fei & Cheng, Hui, 2010. "Effects of selective attention on continuous opinions and discrete decisions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3711-3719.
    15. Fan, Kangqi & Pedrycz, Witold, 2015. "Emergence and spread of extremist opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 87-97.
    16. Cheng, Zhichao & Xiong, Yang & Xu, Yiwen, 2016. "An opinion diffusion model with decision-making groups: The influence of the opinion’s acceptability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 429-438.
    17. Deng, Lei & Liu, Yun & Xiong, Fei, 2013. "An opinion diffusion model with clustered early adopters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3546-3554.
    18. Cui, Peng-Bi, 2023. "Exploring the foundation of social diversity and coherence with a novel attraction–repulsion model framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    19. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    20. Gersbach, Hans & Jackson, Matthew O. & Muller, Philippe & Tejada, Oriol, 2023. "Electoral competition with costly policy changes: A dynamic perspective," Journal of Economic Theory, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.