IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v350y2019icp198-208.html
   My bibliography  Save this article

A remark on the q-fractional order differential equations

Author

Listed:
  • Tang, Yongchao
  • Zhang, Tie

Abstract

An analytical method to obtain the exact solution of q-fractional order differential equations was presented in article Koca (2015) which shows that: “Solving a q-fractional order differential equation is equivalent to solve a q-integer order differential equation”. In this article, we first show that the analytical method given in [3] is wrong. Then, we propose analytical and numerical methods for the Caputo type q-fractional differential equations by using the q-beta function. Some examples are given to disconfirm the solving method in [3] and valid the effectiveness of our methods.

Suggested Citation

  • Tang, Yongchao & Zhang, Tie, 2019. "A remark on the q-fractional order differential equations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 198-208.
  • Handle: RePEc:eee:apmaco:v:350:y:2019:i:c:p:198-208
    DOI: 10.1016/j.amc.2019.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319300165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huiqin Chen & Shugui Kang & Lili Kong & Ying Gao, 2018. "Existence of Three Positive Solutions for a Class of Boundary Value Problems of Caputo Fractional -Difference Equation," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-9, February.
    2. Koca, Ilknur, 2015. "A method for solving differential equations of q-fractional order," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1-5.
    3. Thabet Abdeljawad & Betül Benli & Dumitru Baleanu, 2012. "A Generalized q -Mittag-Leffler Function by q -Captuo Fractional Linear Equations," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-11, May.
    4. Alkahtani, Badr Saad T. & Atangana, Abdon, 2016. "Analysis of non-homogeneous heat model with new trend of derivative with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 566-571.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Naeem & Saqib Hussain & Shahid Khan & Tahir Mahmood & Maslina Darus & Zahid Shareef, 2020. "Janowski Type q -Convex and q -Close-to-Convex Functions Associated with q -Conic Domain," Mathematics, MDPI, vol. 8(3), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yusuf, Abdullahi & Inc, Mustafa & Isa Aliyu, Aliyu & Baleanu, Dumitru, 2018. "Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 220-226.
    2. Uçar, Sümeyra & Uçar, Esmehan & Özdemir, Necati & Hammouch, Zakia, 2019. "Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 300-306.
    3. Bhatter, Sanjay & Mathur, Amit & Kumar, Devendra & Singh, Jagdev, 2020. "A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    4. Algahtani, Obaid Jefain Julaighim, 2016. "Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 552-559.
    5. Alkahtani, Badr Saad T. & Atangana, Abdon, 2016. "Analysis of non-homogeneous heat model with new trend of derivative with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 566-571.
    6. Rashid, Saima & Jarad, Fahd & Alsharidi, Abdulaziz Khalid, 2022. "Numerical investigation of fractional-order cholera epidemic model with transmission dynamics via fractal–fractional operator technique," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. Qasem Al-Mdallal & Kashif Ali Abro & Ilyas Khan, 2018. "Analytical Solutions of Fractional Walter’s B Fluid with Applications," Complexity, Hindawi, vol. 2018, pages 1-10, February.
    8. Mouataz Billah Mesmouli & Abdelouaheb Ardjouni, 2022. "Stability in Nonlinear Neutral Caputo q -Fractional Difference Equations," Mathematics, MDPI, vol. 10(24), pages 1-9, December.
    9. Zahra, Waheed K. & Abdel-Aty, Mahmoud & Abidou, Diaa, 2020. "A fractional model for estimating the hole geometry in the laser drilling process of thin metal sheets," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    10. J. Kayalvizhi & A. G. Vijaya Kumar & Hakan F. Öztop & Ndolane Sene & Nidal H. Abu-Hamdeh, 2022. "Heat Transfer Enhancement through Thermodynamical Activity of H 2 O/Clay Nanofluid Flow over an Infinite Upright Plate with Caputo Fractional-Order Derivative," Energies, MDPI, vol. 15(16), pages 1-18, August.
    11. Nazir, Aqsa & Ahmed, Naveed & Khan, Umar & Mohyud-din, Syed Tauseef, 2020. "On stability of improved conformable model for studying the dynamics of a malnutrition community," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    12. Tajadodi, H., 2020. "A Numerical approach of fractional advection-diffusion equation with Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    13. Inc, Mustafa & Yusuf, Abdullahi & Aliyu, Aliyu Isa & Baleanu, Dumitru, 2018. "Investigation of the logarithmic-KdV equation involving Mittag-Leffler type kernel with Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 520-531.
    14. Abdel-Gawad, Hamdy I. & Baleanu, Dumitru & Abdel-Gawad, Ahmed H., 2021. "Unification of the different fractional time derivatives: An application to the epidemic-antivirus dynamical system in computer networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Wengui Yang & Yaping Qin, 2016. "Positive Solutions for Nonlinear Caputo Type Fractional q -Difference Equations with Integral Boundary Conditions," Mathematics, MDPI, vol. 4(4), pages 1-15, November.
    16. Singh, Jagdev & Kumar, Devendra & Hammouch, Zakia & Atangana, Abdon, 2018. "A fractional epidemiological model for computer viruses pertaining to a new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 504-515.
    17. Gao, Wei & Veeresha, P. & Prakasha, D.G. & Baskonus, Haci Mehmet & Yel, Gulnur, 2020. "New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    18. Abdulhameed, M. & Muhammad, M.M. & Gital, A.Y. & Yakubu, D.G. & Khan, I., 2019. "Effect of fractional derivatives on transient MHD flow and radiative heat transfer in a micro-parallel channel at high zeta potentials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 42-71.
    19. Basheer, Saeed F.A. & Marabeh, Mohammad A.A., 2023. "Fuzzy Caputo q-fractional linear equations on the time scale Tq," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    20. Singh, Jagdev & Kumar, Devendra & Nieto, Juan J., 2017. "Analysis of an El Nino-Southern Oscillation model with a new fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 109-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:350:y:2019:i:c:p:198-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.