IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v316y2018icp102-114.html
   My bibliography  Save this article

Maximizing Wiener index for trees with given vertex weight and degree sequences

Author

Listed:
  • Goubko, Mikhail

Abstract

The Wiener index is maximized over the set of trees with the given vertex weight and degree sequences. This model covers the traditional “unweighed” Wiener index, the terminal Wiener index, and the vertex distance index. It is shown that there exists an optimal caterpillar. If weights of internal vertices increase in their degrees, then an optimal caterpillar exists with weights of internal vertices on its backbone monotonously increasing from some central point to the ends of the backbone, and the same is true for pendent vertices. A tight upper bound of the Wiener index value is proposed and an efficient greedy heuristics is developed that approximates well the optimal index value. Finally, a branch and bound algorithm is built and tested for the exact solution of this NP-complete problem.

Suggested Citation

  • Goubko, Mikhail, 2018. "Maximizing Wiener index for trees with given vertex weight and degree sequences," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 102-114.
  • Handle: RePEc:eee:apmaco:v:316:y:2018:i:c:p:102-114
    DOI: 10.1016/j.amc.2017.07.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317305386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.07.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lang, Rongling & Li, Tao & Mo, Desen & Shi, Yongtang, 2016. "A novel method for analyzing inverse problem of topological indices of graphs using competitive agglomeration," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 115-121.
    2. Su, Guifu & Tu, Jianhua & Das, Kinkar Ch., 2015. "Graphs with fixed number of pendent vertices and minimal Zeroth-order general Randić index," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 705-710.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangxiang Liu & Ligong Wang & Xihe Li, 2020. "The Wiener index of hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 351-364, February.
    2. Cai, Qingqiong & Cao, Fuyuan & Li, Tao & Wang, Hua, 2018. "On distances in vertex-weighted trees," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 435-442.
    3. Al-Yakoob, Salem & Stevanović, Dragan, 2020. "On transmission irregular starlike trees," Applied Mathematics and Computation, Elsevier, vol. 380(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua, Hongbo & Das, Kinkar Ch., 2016. "On the Wiener polarity index of graphs," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 162-167.
    2. Das, Kinkar Ch. & Dehmer, Matthias, 2016. "Comparison between the zeroth-order Randić index and the sum-connectivity index," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 585-589.
    3. Zhang, Xin, 2019. "Upper bound on the sum of powers of the degrees of graphs with few crossings per edge," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 163-169.
    4. Li, Fengwei & Ye, Qingfang & Sun, Yuefang, 2017. "On edge-rupture degree of graphs," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 282-293.
    5. Das, Kinkar Ch., 2016. "On the Graovac–Ghorbani index of graphs," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 353-360.
    6. Yu, Guihai & Liu, Xin & Qu, Hui, 2017. "Singularity of Hermitian (quasi-)Laplacian matrix of mixed graphs," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 287-292.
    7. Fang Gao & Xiaoxin Li & Kai Zhou & Jia-Bao Liu, 2018. "The Extremal Graphs of Some Topological Indices with Given Vertex k -Partiteness," Mathematics, MDPI, vol. 6(11), pages 1-11, November.
    8. Cui, Qing & Zhong, Lingping, 2017. "The general Randić index of trees with given number of pendent vertices," Applied Mathematics and Computation, Elsevier, vol. 302(C), pages 111-121.
    9. Guihai Yu & Hui Qu, 2018. "More on Spectral Analysis of Signed Networks," Complexity, Hindawi, vol. 2018, pages 1-6, October.
    10. Ji, Shengjin & Liu, Mengmeng & Wu, Jianliang, 2018. "A lower bound of revised Szeged index of bicyclic graphs," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 480-487.
    11. Cao, Shujuan & Dehmer, Matthias & Kang, Zhe, 2017. "Network Entropies Based on Independent Sets and Matchings," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 265-270.
    12. Lan, Yongxin & Li, Tao & Wang, Hua & Xia, Chengyi, 2019. "A note on extremal trees with degree conditions," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 70-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:316:y:2018:i:c:p:102-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.