IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v309y2017icp170-182.html
   My bibliography  Save this article

The numerical analysis of piezoelectric ceramics based on the Hermite-type RPIM

Author

Listed:
  • Ma, Jichao
  • Wei, Gaofeng
  • Liu, Dandan
  • Liu, Gongtian

Abstract

In this paper, the Hermite-type radial point interpolation method (RPIM) is applied to analyze the property of piezoelectric ceramics in order to overcome the defects of finite element method. In this method, the inside and boundary of the problem domain are discreted by a distribution of nodes, and then the interpolation function of nodes are constructed to solve the displacement of the evaluation nodes. Compared with the finite element method, it is easier and faster for the Hermite-type RPIM to accurately achieve solution of the local regions. In contrast with the existing meshless methods, this method would not cause singularity in the process of evaluating the shape function. Furthermore, the shape function of the Hermite-type RPIM has a better stability and it can adapt to any distribution of nodes. In addition, the accuracy and stability of the method are proved by the numerical simulation.

Suggested Citation

  • Ma, Jichao & Wei, Gaofeng & Liu, Dandan & Liu, Gongtian, 2017. "The numerical analysis of piezoelectric ceramics based on the Hermite-type RPIM," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 170-182.
  • Handle: RePEc:eee:apmaco:v:309:y:2017:i:c:p:170-182
    DOI: 10.1016/j.amc.2017.03.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317302291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.03.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antanas Žilinskas, 2010. "On similarities between two models of global optimization: statistical models and radial basis functions," Journal of Global Optimization, Springer, vol. 48(1), pages 173-182, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Xiao & Zhou, Bo & Xue, Shifeng, 2022. "A Hermite interpolation element-free Galerkin method for functionally graded structures," Applied Mathematics and Computation, Elsevier, vol. 419(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Rivier & P. M. Congedo, 2019. "Surrogate-assisted Bounding-Box approach for optimization problems with tunable objectives fidelity," Journal of Global Optimization, Springer, vol. 75(4), pages 1079-1109, December.
    2. Yaroslav D. Sergeyev & Marat S. Mukhametzhanov & Dmitri E. Kvasov & Daniela Lera, 2016. "Derivative-Free Local Tuning and Local Improvement Techniques Embedded in the Univariate Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 186-208, October.
    3. Albertas Gimbutas & Antanas Žilinskas, 2018. "An algorithm of simplicial Lipschitz optimization with the bi-criteria selection of simplices for the bi-section," Journal of Global Optimization, Springer, vol. 71(1), pages 115-127, May.
    4. Daniela Lera & Yaroslav D. Sergeyev, 2018. "GOSH: derivative-free global optimization using multi-dimensional space-filling curves," Journal of Global Optimization, Springer, vol. 71(1), pages 193-211, May.
    5. H. Alwardi & S. Wang & L. Jennings & S. Richardson, 2012. "An adaptive least-squares collocation radial basis function method for the HJB equation," Journal of Global Optimization, Springer, vol. 52(2), pages 305-322, February.
    6. H. Alwardi & S. Wang & L. Jennings, 2013. "An adaptive domain decomposition method for the Hamilton–Jacobi–Bellman equation," Journal of Global Optimization, Springer, vol. 56(4), pages 1361-1373, August.
    7. Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.
    8. Grishagin, Vladimir & Israfilov, Ruslan & Sergeyev, Yaroslav, 2018. "Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 270-280.
    9. Sergeyev, Yaroslav D. & Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2017. "Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 96-109.
    10. R. Cavoretto & A. Rossi & M. S. Mukhametzhanov & Ya. D. Sergeyev, 2021. "On the search of the shape parameter in radial basis functions using univariate global optimization methods," Journal of Global Optimization, Springer, vol. 79(2), pages 305-327, February.
    11. Ray-Bing Chen & Yuan Wang & C. F. Jeff Wu, 2020. "Finding optimal points for expensive functions using adaptive RBF-based surrogate model via uncertainty quantification," Journal of Global Optimization, Springer, vol. 77(4), pages 919-948, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:309:y:2017:i:c:p:170-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.