IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v292y2017icp9-18.html
   My bibliography  Save this article

Moving mesh discontinuous Galerkin methods for PDEs with traveling waves

Author

Listed:
  • Uzunca, M.
  • Karasözen, B.
  • Küçükseyhan, T.

Abstract

In this paper, a moving mesh discontinuous Galerkin (dG) method is developed for nonlinear partial differential equations (PDEs) with traveling wave solutions. The moving mesh strategy for one dimensional PDEs is based on the rezoning approach which decouples the solution of the PDE from the moving mesh equation. We show that the dG moving mesh method is able to resolve sharp wave fronts and wave speeds accurately for the optimal, arc-length and curvature monitor functions. Numerical results reveal the efficiency of the proposed moving mesh dG method for solving Burgers’, Burgers’–Fisher and Schlögl (Nagumo) equations.

Suggested Citation

  • Uzunca, M. & Karasözen, B. & Küçükseyhan, T., 2017. "Moving mesh discontinuous Galerkin methods for PDEs with traveling waves," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 9-18.
  • Handle: RePEc:eee:apmaco:v:292:y:2017:i:c:p:9-18
    DOI: 10.1016/j.amc.2016.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316304726
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.07.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rico Buchholz & Harald Engel & Eileen Kammann & Fredi Tröltzsch, 2013. "On the optimal control of the Schlögl-model," Computational Optimization and Applications, Springer, vol. 56(1), pages 153-185, September.
    2. Rico Buchholz & Harald Engel & Eileen Kammann & Fredi Tröltzsch, 2013. "Erratum to: On the optimal control of the Schlögl-model," Computational Optimization and Applications, Springer, vol. 56(1), pages 187-188, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castillo, Paul & Gómez, Sergio & Manzanarez, Sergio, 2019. "Improving the accuracy of LDG approximations on coarse meshes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 310-326.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Casas & Christopher Ryll & Fredi Tröltzsch, 2018. "Optimal control of a class of reaction–diffusion systems," Computational Optimization and Applications, Springer, vol. 70(3), pages 677-707, July.
    2. Peter Nestler & Eckehard Schöll & Fredi Tröltzsch, 2016. "Optimization of nonlocal time-delayed feedback controllers," Computational Optimization and Applications, Springer, vol. 64(1), pages 265-294, May.
    3. Daraghmeh, Adnan & Hartmann, Carsten & Qatanani, Naji, 2019. "Balanced model reduction of linear systems with nonzero initial conditions: Singular perturbation approximation," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 295-307.
    4. Jens Lang & Bernhard A. Schmitt, 2024. "Implicit Peer Triplets in Gradient-Based Solution Algorithms for ODE Constrained Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 985-1026, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:292:y:2017:i:c:p:9-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.