IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v273y2016icp880-884.html
   My bibliography  Save this article

The Nordhaus–Gaddum-type inequality for the Wiener polarity index

Author

Listed:
  • Zhang, Yanhong
  • Hu, Yumei

Abstract

The Wiener polarity index Wp(G) of a graph G is the number of unordered pairs of vertices {u, v} of G such that the distance between u and v is 3. In this paper, we study the Nordhaus–Gaddum-type inequality for the Wiener polarity index of a graph G of order n. Due to concerns that both Wp(G) and Wp(G¯) are nontrivial only when diam(G)=3 and diam(G¯)=3, we firstly consider the crucial case and get that 2≤Wp(G)+Wp(G¯)≤⌈n2⌉⌊n2⌋−n+2. Moreover, the bounds are best possible, and the corresponding extremal graphs are also presented. Then we generalize the results to all connected simple graphs. Furthermore, we discuss the Nordhaus–Gaddum-type inequality for trees and unicyclic graphs, respectively.

Suggested Citation

  • Zhang, Yanhong & Hu, Yumei, 2016. "The Nordhaus–Gaddum-type inequality for the Wiener polarity index," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 880-884.
  • Handle: RePEc:eee:apmaco:v:273:y:2016:i:c:p:880-884
    DOI: 10.1016/j.amc.2015.10.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031501396X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.10.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Hui & Li, Tao & Ma, Yuede & Wang, Hua, 2018. "Analyzing lattice networks through substructures," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 297-314.
    2. Gutman, Ivan, 2016. "On Steiner degree distance of trees," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 163-167.
    3. Hua, Hongbo & Das, Kinkar Ch., 2016. "On the Wiener polarity index of graphs," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 162-167.
    4. Ashrafi, Ali Reza & Ghalavand, Ali, 2017. "Ordering chemical trees by Wiener polarity index," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 301-312.
    5. Noureen, Sadia & Bhatti, Akhlaq Ahmad & Ali, Akbar, 2021. "Towards the solution of an extremal problem concerning the Wiener polarity index of alkanes," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Ali, Akbar & Du, Zhibin & Ali, Muhammad, 2018. "A note on chemical trees with minimum Wiener polarity index," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 231-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:273:y:2016:i:c:p:880-884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.