IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v271y2015icp317-322.html
   My bibliography  Save this article

Uncovering cooperative behaviors with sparse historical behavior data in the spatial games

Author

Listed:
  • Wang, Xu-Wen
  • Jiang, Luo-Luo
  • Nie, Sen
  • Wang, Bing-Hong

Abstract

For past decades, the main attention of the evolutionary games has been focused on cooperation mechanism with the assumption that the strategy information of all players are known. However, it is difficult for observers to obtain the global information of players’ strategies in the real world, and some players even hide their strategy information to confuse their opponents. Here we try to solve the problem to predicate the hidden strategies with sparse historical behavior data in the evolutionary games. To quantify the similarity of strategies among the players in our method, the Euclidean distance of players is defined from the strategies of the players in the few past rounds. Then, the hidden strategy of a player will be determined from the tendency that players with minimum Euclidean distance will adopt similar strategies. The method has good performance on determining hidden strategy of human beings in both the prisoner’s dilemma game and the public goods game where strategies of twenty five percent players are hidden, and the success rate to determine hidden strategy reaches up to 0.9. It is also found that the success rate to determine hidden strategy depends on both length of historical behavior data and tempting payoff b (the prisoner’s dilemma game) or multiple factor r (the public goods game).

Suggested Citation

  • Wang, Xu-Wen & Jiang, Luo-Luo & Nie, Sen & Wang, Bing-Hong, 2015. "Uncovering cooperative behaviors with sparse historical behavior data in the spatial games," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 317-322.
  • Handle: RePEc:eee:apmaco:v:271:y:2015:i:c:p:317-322
    DOI: 10.1016/j.amc.2015.09.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315012412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.09.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Fu & L.-H. Liu & L. Wang, 2007. "Evolutionary Prisoner's Dilemma on heterogeneous Newman-Watts small-world network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(4), pages 367-372, April.
    2. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    3. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    4. Luo-Luo Jiang & Matjaž Perc & Attila Szolnoki, 2013. "If Cooperation Is Likely Punish Mildly: Insights from Economic Experiments Based on the Snowdrift Game," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-7, May.
    5. Wang, Xuwen & Zhang, Haifeng & Nie, Sen & Wang, Binghong, 2013. "Evolution of public cooperation with weighted and conditional strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4668-4674.
    6. Rand, David Gertler & Dreber, Anna & Fudenberg, Drew & Ellingson, Tore & Nowak, Martin A., 2009. "Positive Interactions Promote Public Cooperation," Scholarly Articles 3804483, Harvard University Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Hedong & Tian, Cunzhi & Ye, Wenxing & Fan, Suohai, 2018. "Effects of investors’ power correlations in the power-based game on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 424-432.
    2. Zhang, Yifan & Shu, Gang & Li, Ya, 2017. "Strategy-updating depending on local environment enhances cooperation in prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 224-232.
    3. Xu, Hedong & Tian, Cunzhi & Xiao, Xinrong & Fan, Suohai, 2018. "Evolutionary investors’ power-based game on networks," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 125-133.
    4. Xu, Hedong & Fan, Suohai & Tian, Cunzhi & Xiao, Xinrong, 2019. "Evolutionary investor sharing game on networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 138-145.
    5. Xu, Hedong & Fan, Suohai & Tian, Cunzhi & Xiao, Xinrong, 2019. "Effect of strategy-assortativity on investor sharing games in the market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 211-225.
    6. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2017. "Publishing the donation list incompletely promotes the emergence of cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 48-56.
    7. Ye, Wenxing & Fan, Suohai, 2017. "Evolutionary snowdrift game with rational selection based on radical evaluation," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 310-317.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhen & Chen, Tong & Wang, Yongjie, 2017. "Leadership by example promotes the emergence of cooperation in public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 100-105.
    2. Zhuang, Qian & Wang, Dong & Fan, Ying & Di, Zengru, 2012. "Evolution of cooperation in a heterogeneous population with influential individuals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1735-1741.
    3. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2019. "Cleverly handling the donation information can promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 363-373.
    4. Wang, Xu-Wen & Nie, Sen & Jiang, Luo-Luo & Wang, Bing-Hong & Chen, Shi-Ming, 2017. "Role of delay-based reward in the spatial cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 153-158.
    5. Liu, Chengwei & Wang, Juan & Li, Xiaopeng & Xia, Chengyi, 2020. "The link weight adjustment considering historical strategy promotes the cooperation in the spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    6. Perc, Matjaž & Grigolini, Paolo, 2013. "Collective behavior and evolutionary games – An introduction," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 1-5.
    7. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    8. Yang Wang & Binghong Wang, 2015. "Evolution of Cooperation on Spatial Network with Limited Resource," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-9, August.
    9. Faqi Du & Feng Fu, 2011. "Partner Selection Shapes the Strategic and Topological Evolution of Cooperation," Dynamic Games and Applications, Springer, vol. 1(3), pages 354-369, September.
    10. Te Wu & Long Wang & Feng Fu, 2017. "Coevolutionary dynamics of phenotypic diversity and contingent cooperation," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-16, January.
    11. Huang, Yongchao & Wan, Siyi & Zheng, Junjun & Liu, Wenyi, 2023. "Evolution of cooperation in spatial public goods game with interactive diversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    12. Te Wu & Feng Fu & Long Wang, 2011. "Moving Away from Nasty Encounters Enhances Cooperation in Ecological Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    13. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    14. Sahoo, Debgopal & Samanta, Guruprasad, 2023. "Modeling cooperative evolution in prey species using the snowdrift game with evolutionary impact on prey–predator dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    15. Liang, Rizhou & Zhang, Jiqiang & Zheng, Guozhong & Chen, Li, 2021. "Social hierarchy promotes the cooperation prevalence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    16. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    17. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    18. Xiang Wei & Peng Xu & Shuiting Du & Guanghui Yan & Huayan Pei, 2021. "Reputational preference-based payoff punishment promotes cooperation in spatial social dilemmas," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-7, October.
    19. Jin, Jiahua & Shen, Chen & Chu, Chen & Shi, Lei, 2017. "Incorporating dominant environment into individual fitness promotes cooperation in the spatial prisoners' dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 70-75.
    20. Zou, Kuan & Han, Wenchen & Zhang, Lan & Huang, Changwei, 2024. "The spatial public goods game on hypergraphs with heterogeneous investment," Applied Mathematics and Computation, Elsevier, vol. 466(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:271:y:2015:i:c:p:317-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.