IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v268y2015icp1152-1163.html
   My bibliography  Save this article

A new class of nonlinear conjugate gradient coefficients with exact and inexact line searches

Author

Listed:
  • Rivaie, Mohd
  • Mamat, Mustafa
  • Abashar, Abdelrhaman

Abstract

Conjugate gradient (CG) methods have played an important role in solving large-scale unconstrained optimization. In this paper, we propose a new family of CG coefficients (βk) that possess sufficient descent conditions and global convergence properties. This new βk is an extension of the already proven βkRMIL from Rivaie et al. [19] (A new class of nonlinear conjugate gradient coefficient with global convergence properties, Appl. Math. Comp. 218(2012) 11323-11332). Global convergence result is established using both exact and inexact line searches. Numerical results show that the performance of the new proposed formula is quite similar to βkRMIL and suited to both line searches. Importantly, the performance of this βk is more efficient and superior than the other well-known βk.

Suggested Citation

  • Rivaie, Mohd & Mamat, Mustafa & Abashar, Abdelrhaman, 2015. "A new class of nonlinear conjugate gradient coefficients with exact and inexact line searches," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 1152-1163.
  • Handle: RePEc:eee:apmaco:v:268:y:2015:i:c:p:1152-1163
    DOI: 10.1016/j.amc.2015.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315009315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie Sun & Jiapu Zhang, 2001. "Global Convergence of Conjugate Gradient Methods without Line Search," Annals of Operations Research, Springer, vol. 103(1), pages 161-173, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siti Farhana Husin & Mustafa Mamat & Mohd Asrul Hery Ibrahim & Mohd Rivaie, 2020. "An Efficient Three-Term Iterative Method for Estimating Linear Approximation Models in Regression Analysis," Mathematics, MDPI, vol. 8(6), pages 1-12, June.
    2. Mrad, Hatem & Fakhari, Seyyed Mojtaba, 2024. "Optimization of unconstrained problems using a developed algorithm of spectral conjugate gradient method calculation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 282-290.
    3. Ibrahim Mohammed Sulaiman & Aliyu Muhammed Awwal & Maulana Malik & Nuttapol Pakkaranang & Bancha Panyanak, 2022. "A Derivative-Free MZPRP Projection Method for Convex Constrained Nonlinear Equations and Its Application in Compressive Sensing," Mathematics, MDPI, vol. 10(16), pages 1-17, August.
    4. Rabiu Bashir Yunus & Nooraini Zainuddin & Hanita Daud & Ramani Kannan & Samsul Ariffin Abdul Karim & Mahmoud Muhammad Yahaya, 2023. "A Modified Structured Spectral HS Method for Nonlinear Least Squares Problems and Applications in Robot Arm Control," Mathematics, MDPI, vol. 11(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Labat & J. Idier, 2008. "Convergence of Conjugate Gradient Methods with a Closed-Form Stepsize Formula," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 43-60, January.
    2. Shao-Jian Qu & Mark Goh & Xiujie Zhang, 2011. "A new hybrid method for nonlinear complementarity problems," Computational Optimization and Applications, Springer, vol. 49(3), pages 493-520, July.
    3. Yi-gui Ou & Guan-shu Wang, 2012. "A hybrid ODE-based method for unconstrained optimization problems," Computational Optimization and Applications, Springer, vol. 53(1), pages 249-270, September.
    4. Shi, Zhen-Jun & Shen, Jie, 2007. "Convergence of Liu-Storey conjugate gradient method," European Journal of Operational Research, Elsevier, vol. 182(2), pages 552-560, October.
    5. Sun, Jie & Yang, Xiaoqi & Chen, Xiongda, 2005. "Quadratic cost flow and the conjugate gradient method," European Journal of Operational Research, Elsevier, vol. 164(1), pages 104-114, July.
    6. Gonglin Yuan & Xiwen Lu, 2009. "A modified PRP conjugate gradient method," Annals of Operations Research, Springer, vol. 166(1), pages 73-90, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:268:y:2015:i:c:p:1152-1163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.