IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v267y2015icp742-749.html
   My bibliography  Save this article

Form finding and analysis of inflatable dams using dynamic relaxation

Author

Listed:
  • Streeter, M.
  • Rhode-Barbarigos, L.
  • Adriaenssens, S.

Abstract

Inflatable dams are flexible membrane structures inflated by air and/or water. Due to their ease of construction, rapid deployability and low cost, these systems have great potential for hazard mitigation applications in the context of global warming. However, designing inflatable dams is a challenging task as the dam’s initial equilibrium shape has to be determined by either experimental or numerical form-finding methods. Furthermore, the dam’s shape and the applied loading are coupled since changes in the form of the structure induce also changes in the loading profile. In this paper, dynamic relaxation, a well-established form-finding and analysis technique, is employed for the cross-sectional analysis of inflatable dams. Using this technique and the proposed extensions, the structural behavior of inflatable dams can be analyzed under constant and varying internal pressure as well as different loading and support conditions. The results are in agreement with published results in literature. Therefore, the presented method provides an alternative computationally advantageous tool for the design of inflatable dams.

Suggested Citation

  • Streeter, M. & Rhode-Barbarigos, L. & Adriaenssens, S., 2015. "Form finding and analysis of inflatable dams using dynamic relaxation," Applied Mathematics and Computation, Elsevier, vol. 267(C), pages 742-749.
  • Handle: RePEc:eee:apmaco:v:267:y:2015:i:c:p:742-749
    DOI: 10.1016/j.amc.2014.12.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314017081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.12.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adam Smith & Richard Katz, 2013. "US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 387-410, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyunwoo Kang & Venkataramana Sridhar, 2018. "Improved Drought Prediction Using Near Real-Time Climate Forecasts and Simulated Hydrologic Conditions," Sustainability, MDPI, vol. 10(6), pages 1-29, May.
    2. Jenni Dinger & Michael Conger & David Hekman & Carla Bustamante, 2020. "Somebody That I Used to Know: The Immediate and Long-Term Effects of Social Identity in Post-disaster Business Communities," Journal of Business Ethics, Springer, vol. 166(1), pages 115-141, September.
    3. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    4. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, vol. 8(2), pages 1-24, May.
    5. Joshua M. Pearce & Richard Parncutt, 2023. "Quantifying Global Greenhouse Gas Emissions in Human Deaths to Guide Energy Policy," Energies, MDPI, vol. 16(16), pages 1-20, August.
    6. Ahmadiani, Mona & Ferreira, Susana, 2021. "Well-being effects of extreme weather events in the United States," Resource and Energy Economics, Elsevier, vol. 64(C).
    7. F. Letson & R. J. Barthelmie & W. Hu & L. D. Brown & S. C. Pryor, 2019. "Wind gust quantification using seismic measurements," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 355-377, October.
    8. Farhan Ali & Shaoan Huang & Roland Cheo, 2020. "Climatic Impacts on Basic Human Needs in the United States of America: A Panel Data Analysis," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    9. Xavier Romão & Esmeralda Paupério, 2016. "A framework to assess quality and uncertainty in disaster loss data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1077-1102, September.
    10. Olen, Beau & Wu, JunJie, 2015. "Impacts of Water Scarcity and Climate on Land Use for Irrigated Agriculture in the U.S. West Coast," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205719, Agricultural and Applied Economics Association.
    11. Tudose, Nicu Constantin & Cheval, Sorin & Ungurean, Cezar & Broekman, Annelies & Sanchez-Plaza, Anabel & Cremades, Roger & Mitter, Hermine & Kropf, Bernadette & Davidescu, Serban Octavian & Dinca, Luc, 2022. "Climate services for sustainable resource management: The water—energy—land nexus in the Tărlung river basin (Romania)," Land Use Policy, Elsevier, vol. 119(C).
    12. Jing Gao & Melissa S. Bukovsky, 2023. "Urban land patterns can moderate population exposures to climate extremes over the 21st century," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Brian Sliker & Leonard Nakamura, 2023. "The Increasing Pace of Weather-Related Cost Shocks: Should Net Domestic Product be Affected by Climate Disasters?," BEA Papers 0123, Bureau of Economic Analysis.
    14. De Juan Fernández, Aránzazu & Poncela, Pilar & Rodríguez Caballero, Carlos Vladimir, 2022. "Economic activity and climate change," DES - Working Papers. Statistics and Econometrics. WS 35044, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. U. Surendran & B. Anagha & P. Raja & V. Kumar & K. Rajan & M. Jayakumar, 2019. "Analysis of Drought from Humid, Semi-Arid and Arid Regions of India Using DrinC Model with Different Drought Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1521-1540, March.
    16. Ricardo Correa & Ai He & Christoph Herpfer & Ugur Lel, 2022. "The rising tide lifts some interest rates: climate change, natural disasters, and loan pricing," International Finance Discussion Papers 1345, Board of Governors of the Federal Reserve System (U.S.).
    17. Conte, Marc N. & Kelly, David L., 2018. "An imperfect storm: Fat-tailed tropical cyclone damages, insurance, and climate policy," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 677-706.
    18. Amine Ouazad & Matthew E Kahn, 2022. "Mortgage Finance and Climate Change: Securitization Dynamics in the Aftermath of Natural Disasters," The Review of Financial Studies, Society for Financial Studies, vol. 35(8), pages 3617-3665.
    19. Bourdeau-Brien, Michael & Kryzanowski, Lawrence, 2017. "The impact of natural disasters on the stock returns and volatilities of local firms," The Quarterly Review of Economics and Finance, Elsevier, vol. 63(C), pages 259-270.
    20. Yongxiang Zhang & Hongli Wang & Xuemei Shao & Jinbao Li & Guoyu Ren, 2022. "Extreme drought events diagnosed along the Yellow River and the adjacent area," Climatic Change, Springer, vol. 173(3), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:267:y:2015:i:c:p:742-749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.