IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v259y2015icp1003-1018.html
   My bibliography  Save this article

Adjoint-based error control for the simulation and optimization of gas and water supply networks

Author

Listed:
  • Domschke, Pia
  • Kolb, Oliver
  • Lang, Jens

Abstract

In this work, the simulation and optimization of transport processes through gas and water supply networks is considered. Those networks mainly consist of pipes as well as other components like valves, tanks and compressor/pumping stations. These components are modeled via algebraic equations or ODEs while the flow of gas/water through pipelines is described by a hierarchy of models starting from a hyperbolic system of PDEs down to algebraic equations. We present a consistent modeling of the network and derive adjoint equations for the whole system including initial, coupling and boundary conditions. These equations are suitable to compute gradients for optimization tasks but can also be used to estimate the accuracy of models and the discretization with respect to a given cost functional. With these error estimators we present an algorithm that automatically steers the discretization and the models used to maintain a given accuracy. We show numerical experiments for the simulation algorithm as well as the applicability in an optimization framework.

Suggested Citation

  • Domschke, Pia & Kolb, Oliver & Lang, Jens, 2015. "Adjoint-based error control for the simulation and optimization of gas and water supply networks," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 1003-1018.
  • Handle: RePEc:eee:apmaco:v:259:y:2015:i:c:p:1003-1018
    DOI: 10.1016/j.amc.2015.03.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315003343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.03.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Spellucci, 1998. "A new technique for inconsistent QP problems in the SQP method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 47(3), pages 355-400, October.
    2. Pia Domschke & Bjorn Geißler & Oliver Kolb & Jens Lang & Alexander Martin & Antonio Morsi, 2011. "Combination of Nonlinear and Linear Optimization of Transient Gas Networks," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 605-617, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naumann, Alexander & Kolb, Oliver & Semplice, Matteo, 2018. "On a third order CWENO boundary treatment with application to networks of hyperbolic conservation laws," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 252-270.
    2. Pia Domschke & Oliver Kolb & Jens Lang, 2022. "Fast and reliable transient simulation and continuous optimization of large-scale gas networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(3), pages 475-501, June.
    3. Terrence W. K. Mak & Pascal Van Hentenryck & Anatoly Zlotnik & Russell Bent, 2019. "Dynamic Compressor Optimization in Natural Gas Pipeline Systems," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 40-65, February.
    4. Borsche, Raul & Eimer, Matthias & Siedow, Norbert, 2019. "A local time stepping method for thermal energy transport in district heating networks," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 215-229.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    2. Johannes Thürauf, 2022. "Deciding the feasibility of a booking in the European gas market is coNP-hard," Annals of Operations Research, Springer, vol. 318(1), pages 591-618, November.
    3. Tianhu Deng & Yong Liang & Shixuan Zhang & Jingze Ren & Shuyi Zheng, 2019. "A Dynamic Programming Approach to Power Consumption Minimization in Gunbarrel Natural Gas Networks with Nonidentical Compressor Units," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 593-611, July.
    4. Flisberg, Patrik & Nilsson, Stefan & Rönnqvist, Mikael, 2007. "Optimized on-line process control of bleaching operations with OptCab," Discussion Papers 2007/9, Norwegian School of Economics, Department of Business and Management Science.
    5. Emms, Paul, 2007. "Pricing general insurance with constraints," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 335-355, March.
    6. Adamson, Richard & Hobbs, Martin & Silcock, Andy & Willis, Mark J., 2017. "Steady-state optimisation of a multiple cryogenic air separation unit and compressor plant," Applied Energy, Elsevier, vol. 189(C), pages 221-232.
    7. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    8. Daniel Rose & Martin Schmidt & Marc C. Steinbach & Bernhard M. Willert, 2016. "Computational optimization of gas compressor stations: MINLP models versus continuous reformulations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(3), pages 409-444, June.
    9. Subramaniam Saravana Sankar & Yiqun Xia & Julaluk Carmai & Saiprasit Koetniyom, 2020. "Optimal Eco-Driving Cycles for Conventional Vehicles Using a Genetic Algorithm," Energies, MDPI, vol. 13(17), pages 1-15, August.
    10. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    11. Pia Domschke & Bjorn Geißler & Oliver Kolb & Jens Lang & Alexander Martin & Antonio Morsi, 2011. "Combination of Nonlinear and Linear Optimization of Transient Gas Networks," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 605-617, November.
    12. Zhou, Suyang & Zhuang, Wennan & Wu, Zhi & Gu, Wei & Zhan, Xin & Liu, Zhong & Cao, Siming, 2020. "Optimized scheduling of multi-region Gas and Power Complementary system considering tiered gas tariff," Energy, Elsevier, vol. 193(C).
    13. Patrik Flisberg & Mikael Rönnqvist & Stefan Nilsson, 2009. "Billerud Optimizes Its Bleaching Process Using Online Optimization," Interfaces, INFORMS, vol. 39(2), pages 119-132, April.
    14. Xiong, Jie & Zhao, Haibo & Zhang, Chao & Zheng, Chuguang & Luh, Peter B., 2012. "Thermoeconomic operation optimization of a coal-fired power plant," Energy, Elsevier, vol. 42(1), pages 486-496.
    15. Kolb, Oliver & Göttlich, Simone, 2015. "A continuous buffer allocation model using stochastic processes," European Journal of Operational Research, Elsevier, vol. 242(3), pages 865-874.
    16. Ivo Nowak & Norman Breitfeld & Eligius M. T. Hendrix & Grégoire Njacheun-Njanzoua, 2018. "Decomposition-based Inner- and Outer-Refinement Algorithms for Global Optimization," Journal of Global Optimization, Springer, vol. 72(2), pages 305-321, October.
    17. Martin Gugat & Günter Leugering & Alexander Martin & Martin Schmidt & Mathias Sirvent & David Wintergerst, 2018. "MIP-based instantaneous control of mixed-integer PDE-constrained gas transport problems," Computational Optimization and Applications, Springer, vol. 70(1), pages 267-294, May.
    18. Ríos-Mercado, Roger Z. & Borraz-Sánchez, Conrado, 2015. "Optimization problems in natural gas transportation systems: A state-of-the-art review," Applied Energy, Elsevier, vol. 147(C), pages 536-555.
    19. Wang, Guotao & Zhao, Wei & Qiu, Rui & Liao, Qi & Lin, Zhenjia & Wang, Chang & Zhang, Haoran, 2023. "Operational optimization of large-scale thermal constrained natural gas pipeline networks: A novel iterative decomposition approach," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:259:y:2015:i:c:p:1003-1018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.