IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v257y2015icp264-273.html
   My bibliography  Save this article

A weighted numerical algorithm for two and three dimensional two-sided space fractional wave equations

Author

Listed:
  • Deng, Kaiying
  • Chen, Minghua
  • Sun, Tieli

Abstract

A weighed numerical scheme that can effectively solve the fractional wave equation in a finite domain is provided. We focus on detailedly discussing the two and three dimensional two-sided space fractional wave equations with homogeneous boundary conditions. A second order finite difference scheme is used to discretize the space fractional derivative and the time derivative. Additionally, the numerical results confirm that the weighted numerical algorithm is convergent with second order accuracy in both space and time directions for the homogeneous boundary fractional problems.

Suggested Citation

  • Deng, Kaiying & Chen, Minghua & Sun, Tieli, 2015. "A weighted numerical algorithm for two and three dimensional two-sided space fractional wave equations," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 264-273.
  • Handle: RePEc:eee:apmaco:v:257:y:2015:i:c:p:264-273
    DOI: 10.1016/j.amc.2014.08.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314011333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.08.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Povstenko, Y.Z., 2010. "Evolution of the initial box-signal for time-fractional diffusion–wave equation in a case of different spatial dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4696-4707.
    2. Anh, V. V. & Leonenko, N. N., 2000. "Scaling laws for fractional diffusion-wave equations with singular data," Statistics & Probability Letters, Elsevier, vol. 48(3), pages 239-252, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2015. "On boundary value problems for impulsive fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 874-892.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abel Garcia-Bernabé & S. I. Hernández & L. F. Del Castillo & David Jou, 2016. "Continued-Fraction Expansion of Transport Coefficients with Fractional Calculus," Mathematics, MDPI, vol. 4(4), pages 1-10, December.
    2. Das, S., 2009. "A note on fractional diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2074-2079.
    3. Jumarie, Guy, 2007. "Lagrangian mechanics of fractional order, Hamilton–Jacobi fractional PDE and Taylor’s series of nondifferentiable functions," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 969-987.
    4. O. E. Barndorff-Nielsen & N. N. Leonenko, 2005. "Spectral Properties of Uperpositions of Ornstein-Uhlenbeck Type Processes," Methodology and Computing in Applied Probability, Springer, vol. 7(3), pages 335-352, September.
    5. Rui, Weiguo, 2018. "Idea of invariant subspace combined with elementary integral method for investigating exact solutions of time-fractional NPDEs," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 158-171.
    6. Jumarie, Guy, 2009. "From Lagrangian mechanics fractal in space to space fractal Schrödinger’s equation via fractional Taylor’s series," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1590-1604.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:257:y:2015:i:c:p:264-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.