IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i9p1339-1348.html
   My bibliography  Save this article

Melon crops (Cucumis melo L., cv. Tendral) grown in a mediterranean environment under saline-sodic conditions: Part II. Growth analysis

Author

Listed:
  • Tedeschi, A.
  • Riccardi, M.
  • Menenti, M.

Abstract

An irrigation experiment using saline-sodic waters was carried out in 2004 in the Volturno river plain (southern Italy) to investigate the growth of the melon cultivar Tendral under saline-sodic conditions. Four salinity irrigation treatments (C, T0.5, T1 and T2) were tested using water with electrical conductivities of 0.9, 8.7, 15.3 and 28.2 dS m-1, respectively. At the end of the crop cycle the electrical conductivity () of the saturated paste in the soil profile between 0.0 and 0.9 m reached values of 0.9, 3.2 4.2 and 6.6 dS m-1, respectively, for the C, T0.5, T1 and T2 treatments. Increasing salinity led to a rise in specific leaf area (SLA; cm2 g-1) while it reduced leaf area (LA, m2 per plant), leaf area ratio (LAR, cm2 g-1), the unit leaf rate (ULR, g m-2 per day) and water use efficiency (WUE g kg-1). The relative growth rate (RGR, g g-1 per day) and the biomass produced (W, g plant-1) decreased. The reduction in RGR was closely related to the reduction in relative leaf area growth rate (RLAGR, cm2 of leaf cm-2 per day), the relative leaf weight growth rate (RLWGR, g of leaf g-1 per day) and the relative fruit weight growth rate (RFWGR, g of fruit g-1 per day). A highly significant positive correlation was found between RGR and LAR (R2 = 0.9847***), while between RGR and ULR the determination coefficient was also significant but lower (R2 = 0.6808***). The most visible effect of the salinity treatment was on LA reduction. In T0.5, T1 and T2 the LA was respectively 10%, 34% and 45% less than in the C treatment. W and the crop evapotranspiration (ETc) also decreased with increasing salinity. The reduction in W for T0.5, T1 and T2 (respectively, 2%, 28% and 40% less than treatment C) was greater than the reduction in ETc (respectively, 2%, 22% and 32% less than treatment C). Therefore also the WUE significantly decreased as salinity increased. The Tendral cv. responded to salinity mainly with morphological adaptations, first with a LA reduction that was followed by decreases in the W and ETc. There may well also be functional adaptations associated with ULR reduction.

Suggested Citation

  • Tedeschi, A. & Riccardi, M. & Menenti, M., 2011. "Melon crops (Cucumis melo L., cv. Tendral) grown in a mediterranean environment under saline-sodic conditions: Part II. Growth analysis," Agricultural Water Management, Elsevier, vol. 98(9), pages 1339-1348, July.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:9:p:1339-1348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411000977
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Letey, J. & Hoffman, G.J. & Hopmans, J.W. & Grattan, S.R. & Suarez, D. & Corwin, D.L. & Oster, J.D. & Wu, L. & Amrhein, C., 2011. "Evaluation of soil salinity leaching requirement guidelines," Agricultural Water Management, Elsevier, vol. 98(4), pages 502-506, February.
    2. Tedeschi, A. & Lavini, A. & Riccardi, M. & Pulvento, C. & d'Andria, R., 2011. "Melon crops (Cucumis melo L., cv. Tendral) grown in a mediterranean environment under saline-sodic conditions: Part I. Yield and quality," Agricultural Water Management, Elsevier, vol. 98(9), pages 1329-1338, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Tao & Wang, Ting & Liu, KS & Wang, Lixue & Wang, Kun & Zhou, Yan, 2015. "Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses," Agricultural Water Management, Elsevier, vol. 159(C), pages 115-122.
    2. Tedeschi, A. & Lavini, A. & Riccardi, M. & Pulvento, C. & d'Andria, R., 2011. "Melon crops (Cucumis melo L., cv. Tendral) grown in a mediterranean environment under saline-sodic conditions: Part I. Yield and quality," Agricultural Water Management, Elsevier, vol. 98(9), pages 1329-1338, July.
    3. Yavuz, Duran & Seymen, Musa & Yavuz, Nurcan & Çoklar, Hacer & Ercan, Muhammet, 2021. "Effects of water stress applied at various phenological stages on yield, quality, and water use efficiency of melon," Agricultural Water Management, Elsevier, vol. 246(C).
    4. Visconti, Fernando & Salvador, Alejandra & Navarro, Pilar & de Paz, José Miguel, 2019. "Effects of three irrigation systems on ‘Piel de sapo’ melon yield and quality under salinity conditions," Agricultural Water Management, Elsevier, vol. 226(C).
    5. Chen, Qiting & Jia, Li & Menenti, Massimo & Hu, Guangcheng & Wang, Kun & Yi, Zhiwei & Zhou, Jie & Peng, Fei & Ma, Shaoxiu & You, Quangang & Chen, Xiaojie & Xue, Xian, 2023. "A data-driven high spatial resolution model of biomass accumulation and crop yield: Application to a fragmented desert-oasis agroecosystem," Ecological Modelling, Elsevier, vol. 475(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    2. Peragón, Juan M. & Pérez-Latorre, Francisco J. & Delgado, Antonio & Tóth, Tibor, 2018. "Best management irrigation practices assessed by a GIS-based decision tool for reducing salinization risks in olive orchards," Agricultural Water Management, Elsevier, vol. 202(C), pages 33-41.
    3. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    4. Abdullah Darzi-Naftchali & Henk Ritzema, 2018. "Integrating Irrigation and Drainage Management to Sustain Agriculture in Northern Iran," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    5. Tedeschi, A. & Lavini, A. & Riccardi, M. & Pulvento, C. & d'Andria, R., 2011. "Melon crops (Cucumis melo L., cv. Tendral) grown in a mediterranean environment under saline-sodic conditions: Part I. Yield and quality," Agricultural Water Management, Elsevier, vol. 98(9), pages 1329-1338, July.
    6. Merchán, D. & Casalí, J. & Del Valle de Lersundi, J. & Campo-Bescós, M.A. & Giménez, R. & Preciado, B. & Lafarga, A., 2018. "Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 195(C), pages 120-132.
    7. Prudentia Zikalala & Isaya Kisekka & Mark Grismer, 2019. "Calibration and Global Sensitivity Analysis for a Salinity Model Used in Evaluating Fields Irrigated with Treated Wastewater in the Salinas Valley," Agriculture, MDPI, vol. 9(2), pages 1-33, February.
    8. S. Li & Wan Luo & Z. Jia & S. Tang & C. Chen, 2018. "The Pros and Cons of Encouraging Shallow Groundwater Use through Controlled Drainage in a Salt-Impacted Irrigation Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2475-2487, May.
    9. Haj-Amor, Zied & Kumar Acharjee, Tapos & Dhaouadi, Latifa & Bouri, Salem, 2020. "Impacts of climate change on irrigation water requirement of date palms under future salinity trend in coastal aquifer of Tunisian oasis," Agricultural Water Management, Elsevier, vol. 228(C).
    10. Visconti, Fernando & Salvador, Alejandra & Navarro, Pilar & de Paz, José Miguel, 2019. "Effects of three irrigation systems on ‘Piel de sapo’ melon yield and quality under salinity conditions," Agricultural Water Management, Elsevier, vol. 226(C).
    11. Vaughan, Peter & Letey, John, 2015. "Irrigation water amount and salinity dictate nitrogen requirement," Agricultural Water Management, Elsevier, vol. 157(C), pages 6-11.
    12. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    13. Zhang, Chen & Li, Xiaobin & Kang, Yaohu & Wang, Xunming, 2019. "Salt leaching and response of Dianthus chinensis L. to saline water drip-irrigation in two coastal saline soils," Agricultural Water Management, Elsevier, vol. 218(C), pages 8-16.
    14. Bonachela, Santiago & Fernández, María Dolores & Cabrera-Corral, Francisco Javier & Granados, María Rosa, 2022. "Salt and irrigation management of soil-grown Mediterranean greenhouse tomato crops drip-irrigated with moderately saline water," Agricultural Water Management, Elsevier, vol. 262(C).
    15. Zhen, Jingbo & Lazarovitch, Naftali & Tripler, Effi, 2020. "Effects of fruit load intensity and irrigation level on fruit quality, water productivity and net profits of date palms," Agricultural Water Management, Elsevier, vol. 241(C).
    16. Lankford, Bruce A., 2023. "Resolving the paradoxes of irrigation efficiency: Irrigated systems accounting analyses depletion-based water conservation for reallocation," Agricultural Water Management, Elsevier, vol. 287(C).
    17. Murad, Khandakar Faisal Ibn & Hossain, Akbar & Fakir, Oli Ahmed & Biswas, Sujit Kumar & Sarker, Khokan Kumer & Rannu, Rahena Parvin & Timsina, Jagadish, 2018. "Conjunctive use of saline and fresh water increases the productivity of maize in saline coastal region of Bangladesh," Agricultural Water Management, Elsevier, vol. 204(C), pages 262-270.
    18. Zhang, Tao & Wang, Ting & Liu, KS & Wang, Lixue & Wang, Kun & Zhou, Yan, 2015. "Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses," Agricultural Water Management, Elsevier, vol. 159(C), pages 115-122.
    19. Grattan, S.R. & Díaz, F.J. & Pedrero, F. & Vivaldi, G.A., 2015. "Assessing the suitability of saline wastewaters for irrigation of Citrus spp.: Emphasis on boron and specific-ion interactions," Agricultural Water Management, Elsevier, vol. 157(C), pages 48-58.
    20. Shahrokhnia, Hossein & Wu, Laosheng, 2021. "SALEACH: A new web-based soil salinity leaching model for improved irrigation management," Agricultural Water Management, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:9:p:1339-1348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.