IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i9p1382-1388.html
   My bibliography  Save this article

Validation of a root water uptake model to estimate transpiration constraints

Author

Listed:
  • Casaroli, Derblai
  • de Jong van Lier, Quirijn
  • Dourado Neto, Durval

Abstract

Experimental results obtained from a greenhouse trial with common bean (Phaseolus vulgaris L.) plants performed to test model hypotheses regarding the onset of limiting hydraulic conditions and the shape of the transpiration reduction curve in the falling rate phase are presented. According to these hypotheses based on simulations with an upscaled single-root model, the matric flux potential at the onset of limiting hydraulic conditions is as a function of root length density and potential transpiration rate, while the relative transpiration in the falling rate phase equals the relative matric flux potential. Transpiration of bean plants in water stressed pots with four different soils was determined daily by weighing and compared to values obtained from non-stressed pots. This procedure allowed determining the onset of the falling rate phase and corresponding soil hydraulic conditions. At the onset of the falling rate phase, the value of matric flux potential Ml showed to differ in order of magnitude from the model predicted value for three out of four soils. This difference between model and experiment can be explained by the heterogeneity of the root distribution which is not considered by the model. An empirical factor to deal with this heterogeneity should be included in the model to improve predictions. Comparing the predictions of relative transpiration in the falling rate phase using a linear shape with water content, pressure head or matric flux potential, the matric flux potential based reduction function, in agreement with the hypothesis, showed the best performance, while the pressure head based equation resulted in the highest deviations between observed and predicted values of relative transpiration rates.

Suggested Citation

  • Casaroli, Derblai & de Jong van Lier, Quirijn & Dourado Neto, Durval, 2010. "Validation of a root water uptake model to estimate transpiration constraints," Agricultural Water Management, Elsevier, vol. 97(9), pages 1382-1388, September.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:9:p:1382-1388
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00129-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Green, Steve R. & Kirkham, M.B. & Clothier, Brent E., 2006. "Root uptake and transpiration: From measurements and models to sustainable irrigation," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 165-176, November.
    2. Novak, V. & Hurtalova, T. & Matejka, F., 2005. "Predicting the effects of soil water content and soil water potential on transpiration of maize," Agricultural Water Management, Elsevier, vol. 76(3), pages 211-223, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Renkuan & Yang, Peiling & Zhu, Yuanhao & Wu, Wenyong & Ren, Shumei, 2018. "Modeling soil water flow and quantification of root water extraction from different soil layers under multi-chemicals application in dry land field," Agricultural Water Management, Elsevier, vol. 203(C), pages 75-86.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Zhaoquan & Fan, Jiangchuan & Li, Zhiqiang, 2021. "Dynamic simulation water storage of different parts in peach tree under drought stress," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Janik, Grzegorz & Kłosowicz, Izabela & Walczak, Amadeusz & Adamczewska-Sowińska, Katarzyna & Jama-Rodzeńska, Anna & Sowiński, Józef, 2021. "Application of the TDR technique for the determination of the dynamics of the spatial and temporal distribution of water uptake by plant roots during injection irrigation," Agricultural Water Management, Elsevier, vol. 252(C).
    3. Margarita A. Petoussi & Nicolas Kalogerakis, 2023. "Mathematical Modeling of Pilot Scale Olive Mill Wastewater Phytoremediation Units," Sustainability, MDPI, vol. 15(11), pages 1-36, May.
    4. Fabio V. Difonzo & Costantino Masciopinto & Michele Vurro & Marco Berardi, 2021. "Shooting the Numerical Solution of Moisture Flow Equation with Root Water Uptake Models: A Python Tool," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2553-2567, June.
    5. Lebourgeois, V. & Chopart, J.-L. & Bégué, A. & Le Mézo, L., 2010. "Towards using a thermal infrared index combined with water balance modelling to monitor sugarcane irrigation in a tropical environment," Agricultural Water Management, Elsevier, vol. 97(1), pages 75-82, January.
    6. Cai, Fu & Zhang, Yushu & Mi, Na & Ming, Huiqing & Zhang, Shujie & Zhang, Hui & Zhao, Xianli, 2020. "Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Hedley, C.B. & Yule, I.J., 2009. "A method for spatial prediction of daily soil water status for precise irrigation scheduling," Agricultural Water Management, Elsevier, vol. 96(12), pages 1737-1745, December.
    8. Rivera-Hernández, B. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Juárez-López, J.F. & Aceves-Navarro, L.A., 2010. "Morphological quality of sweet corn (Zea mays L.) ears as response to soil moisture tension and phosphate fertilization in Campeche, Mexico," Agricultural Water Management, Elsevier, vol. 97(9), pages 1365-1374, September.
    9. Kögler, F. & Söffker, D., 2017. "Water (stress) models and deficit irrigation: System-theoretical description and causality mapping," Ecological Modelling, Elsevier, vol. 361(C), pages 135-156.
    10. Hou, Lizhu & Wenninger, Jochen & Shen, Jiangen & Zhou, Yangxiao & Bao, Han & Liu, Haijun, 2014. "Assessing crop coefficients for Zea mays in the semi-arid Hailiutu River catchment, northwest China," Agricultural Water Management, Elsevier, vol. 140(C), pages 37-47.
    11. Zhang, Zhongdian & Huang, Mingbin, 2021. "Effect of root-zone vertical soil moisture heterogeneity on water transport safety in soil-plant-atmosphere continuum in Robinia pseudoacacia," Agricultural Water Management, Elsevier, vol. 246(C).
    12. Wu, Yuanzhi & Huang, Mingbin & Gallichand, Jacques, 2011. "Transpirational response to water availability for winter wheat as affected by soil textures," Agricultural Water Management, Elsevier, vol. 98(4), pages 569-576, February.
    13. Starr, G.C. & Rowland, D. & Griffin, T.S. & Olanya, O.M., 2008. "Soil water in relation to irrigation, water uptake and potato yield in a humid climate," Agricultural Water Management, Elsevier, vol. 95(3), pages 292-300, March.
    14. Kumar, R. & Jat, M.K. & Shankar, V., 2013. "Evaluation of modeling of water ecohydrologic dynamics in soil–root system," Ecological Modelling, Elsevier, vol. 269(C), pages 51-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:9:p:1382-1388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.