IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i7p1063-1069.html
   My bibliography  Save this article

Soil water recharge in a semi-arid temperate climate of the Central U.S. Great Plains

Author

Listed:
  • Grassini, Patricio
  • You, Jinsheng
  • Hubbard, Kenneth G.
  • Cassman, Kenneth G.

Abstract

The amount of soil water at the beginning of the growing season has a large impact on crop yields in rainfed agriculture, especially in semi-arid regions and in years with below-average rainfall in more humid climates. Robust algorithms are needed to estimate soil water storage before planting to aid crop management decisions. The main objectives of this paper are to investigate soil water recharge during the non-growing season (October 20 to May 1) in a semi-arid, temperate ecosystem in south-central Nebraska (USA) and to evaluate empirical models to estimate soil water content at the beginning of the summer-crop growing season. A database of soil water content measurements collected over 5 years at nine locations in south-central Nebraska was used to estimate available water-holding limits in the soil profile and to determine the change in available soil water during the non-growing season. Regression analysis was performed to analyze the relationship among soil water recharge, residual soil water (i.e., soil water content at the end of the previous growing season), total precipitation, and available water-holding capacity (AWHC) in the root zone to 1.5m. Precipitation storage efficiency (PSE) was calculated as the quotient of soil water recharge and total non-growing season precipitation. Predictive models to estimate soil water content at the beginning of summer-crop growing season were derived from these analyses. A large portion of the variation in soil water recharge was explained by residual soil water and precipitation. PSE averaged 28% across site-years; low PSE values were associated with high residual soil water and/or low AWHC. Two predictive models (linear and linear-plateau) that used residual soil water, total precipitation, and AWHC as independent variables explained 75-80% of the variation in the measured soil water content at the beginning of the summer-crop growing season. These empirical models represent a new tool to estimate soil water content by planting date of summer crops. Site-management conditions such as residue amount and its architecture, tillage system, soil texture, and terrain slope are not currently accounted for in these models and would likely improve predictive capacity.

Suggested Citation

  • Grassini, Patricio & You, Jinsheng & Hubbard, Kenneth G. & Cassman, Kenneth G., 2010. "Soil water recharge in a semi-arid temperate climate of the Central U.S. Great Plains," Agricultural Water Management, Elsevier, vol. 97(7), pages 1063-1069, July.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:7:p:1063-1069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00082-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sinclair, T.R. & Salado-Navarro, L.R. & Salas, Graciela & Purcell, L.C., 2007. "Soybean yields and soil water status in Argentina: Simulation analysis," Agricultural Systems, Elsevier, vol. 94(2), pages 471-477, May.
    2. Fernandez, Romina & Quiroga, Alberto & Noellemeyer, Elke & Funaro, Daniel & Montoya, Jorgelina & Hitzmann, Bernd & Peinemann, Norman, 2008. "A study of the effect of the interaction between site-specific conditions, residue cover and weed control on water storage during fallow," Agricultural Water Management, Elsevier, vol. 95(9), pages 1028-1040, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mati, Rastislav & Kotorová, Dana & Gombos, Milan & Kandra, Branislav, 2011. "Development of evapotranspiration and water supply of clay-loamy soil on the East Slovak Lowland," Agricultural Water Management, Elsevier, vol. 98(7), pages 1133-1140, May.
    2. Bing Wang & Fenxiang Wen & Jiangtao Wu & Xiaojun Wang & Yani Hu, 2014. "Vertical Profiles of Soil Water Content as Influenced by Environmental Factors in a Small Catchment on the Hilly-Gully Loess Plateau," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yanmin & Yang, Yonghui & Han, Shumin & Li, Huilong & Wang, Lu & Ma, Qingtao & Ma, Lexin & Wang, Linna & Hou, Zhenjun & Chen, Li & Liu, De Li, 2023. "Comparison of water-saving potential of fallow and crop change with high water-use winter-wheat – summer-maize rotation," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Salado-Navarro, Luis R. & Sinclair, Thomas R., 2009. "Crop rotations in Argentina: Analysis of water balance and yield using crop models," Agricultural Systems, Elsevier, vol. 102(1-3), pages 11-16, October.
    3. Elke Noellemeyer & Romina Fernández & Alberto Quiroga, 2013. "Crop and Tillage Effects on Water Productivity of Dryland Agriculture in Argentina," Agriculture, MDPI, vol. 3(1), pages 1-11, January.
    4. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    5. Jessica L. Chiartas & Louise E. Jackson & Rachael F. Long & Andrew J. Margenot & Anthony T. O'Geen, 2022. "Hedgerows on Crop Field Edges Increase Soil Carbon to a Depth of 1 meter," Sustainability, MDPI, vol. 14(19), pages 1-17, October.
    6. Zeleke, Ketema Tilahun, 2017. "Fallow management increases soil water and nitrogen storage," Agricultural Water Management, Elsevier, vol. 186(C), pages 12-20.
    7. van Dam, J. & Faaij, A.P.C. & Hilbert, J. & Petruzzi, H. & Turkenburg, W.C., 2009. "Large-scale bioenergy production from soybeans and switchgrass in Argentina: Part B. Environmental and socio-economic impacts on a regional level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1679-1709, October.
    8. Ojeda, J.J. & Pembleton, K.G. & Islam, M.R. & Agnusdei, M.G. & Garcia, S.C., 2016. "Evaluation of the agricultural production systems simulator simulating Lucerne and annual ryegrass dry matter yield in the Argentine Pampas and south-eastern Australia," Agricultural Systems, Elsevier, vol. 143(C), pages 61-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:7:p:1063-1069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.