IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i2p317-325.html
   My bibliography  Save this article

Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model

Author

Listed:
  • Lam, Q.D.
  • Schmalz, B.
  • Fohrer, N.

Abstract

The assessments of potential environmental impacts of point and diffuse source pollution at regional scales are necessary to achieve the sustainable development of natural resources such as land and water. Nutrient related diffuse source pollutant inputs can enhance crop growth and improve soil eutrophication. However, excessive nutrient input can result in the impairment of water quality. The objectives of this study were to evaluate the long-term impact of point and diffuse source pollution on nitrate load in a lowland catchment using the ecohydrological model SWAT (Soil and Water Assessment Tool) and to determine the contribution of point and diffuse sources to nitrate load in the entire catchment. The study area Kielstau catchment has a size of approximately 50km2 and is located in the North German lowlands. The water quality is not only influenced by the predominating agricultural land use in the catchment as cropland and pasture, but also by six municipal wastewater treatment plants. Diffuse entries as well as punctual entries from the wastewater treatment plants are implemented in the model set-up. The model was first calibrated and then validated in a daily time step. The values of the Nash-Sutcliffe efficiency for the simulations of flow and nitrate load range from 0.68 to 0.75 for the calibration period and from 0.76 to 0.78 for the validation period. These statistical results revealed that the SWAT model performed satisfactorily in simulating daily flow and nitrate load in lowland catchment of Northern Germany. The results showed that diffuse sources are the main contributor to nitrate load in the entire catchment accounting for about 95% of the total nitrate load, while only 5% results from point sources. The model results also indicated that agriculture is the dominant contributor of diffuse sources and the percentage of agricultural land area is considerably positively correlated to nitrate load at the different subbasins. The area covered by forest is found to be negatively correlated with nitrate load.

Suggested Citation

  • Lam, Q.D. & Schmalz, B. & Fohrer, N., 2010. "Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model," Agricultural Water Management, Elsevier, vol. 97(2), pages 317-325, February.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:2:p:317-325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00294-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tiemeyer, Barbel & Kahle, Petra & Lennartz, Bernd, 2006. "Nutrient losses from artificially drained catchments in North-Eastern Germany at different scales," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 47-57, September.
    2. Anker Højberg & Jens Refsgaard & Frans Geer & Lisbeth Jørgensen & István Zsuffa, 2007. "Use of Models to Support the Monitoring Requirements in the Water Framework Directive," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1649-1672, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shanghong & Liu, Yan & Wang, Taiwei, 2014. "How land use change contributes to reducing soil erosion in the Jialing River Basin, China," Agricultural Water Management, Elsevier, vol. 133(C), pages 65-73.
    2. Yao, Xiaolei & Yu, Jingshan & Jiang, Hong & Sun, Wenchao & Li, Zhanjie, 2016. "Roles of soil erodibility, rainfall erosivity and land use in affecting soil erosion at the basin scale," Agricultural Water Management, Elsevier, vol. 174(C), pages 82-92.
    3. Bossa, A.Y. & Diekkrüger, B. & Giertz, S. & Steup, G. & Sintondji, L.O. & Agbossou, E.K. & Hiepe, C., 2012. "Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa)," Agricultural Water Management, Elsevier, vol. 115(C), pages 20-37.
    4. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.
    5. Liu, Ruimin & Zhang, Peipei & Wang, Xiujuan & Chen, Yaxin & Shen, Zhenyao, 2013. "Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed," Agricultural Water Management, Elsevier, vol. 117(C), pages 9-18.
    6. Kuemmerlen, Mathias & Schmalz, Britta & Guse, Björn & Cai, Qinghua & Fohrer, Nicola & Jähnig, Sonja C., 2014. "Integrating catchment properties in small scale species distribution models of stream macroinvertebrates," Ecological Modelling, Elsevier, vol. 277(C), pages 77-86.
    7. Alice Bernini & Rike Becker & Odunayo David Adeniyi & Giorgio Pilla & Seyed Hamidreza Sadeghi & Michael Maerker, 2023. "Hydrological Implications of Recent Droughts (2004–2022): A SWAT-Based Study in an Ancient Lowland Irrigation Area in Lombardy, Northern Italy," Sustainability, MDPI, vol. 15(24), pages 1-24, December.
    8. Yiannis Panagopoulos & Christos Makropoulos & Maria Mimikou, 2011. "Diffuse Surface Water Pollution: Driving Factors for Different Geoclimatic Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3635-3660, November.
    9. De Girolamo, Anna Maria & Spanò, Marinella & D’Ambrosio, Ersilia & Ricci, Giovanni Francesco & Gentile, Francesco, 2019. "Developing a nitrogen load apportionment tool: Theory and application," Agricultural Water Management, Elsevier, vol. 226(C).
    10. Kanthilanka, H. & Ramilan, T. & Farquharson, R.J. & Weerahewa, J., 2023. "Optimal nitrogen fertilizer decisions for rice farming in a cascaded tank system in Sri Lanka: An analysis using an integrated crop, hydro-nutrient and economic model," Agricultural Systems, Elsevier, vol. 207(C).
    11. Hans Thodsen & Csilla Farkas & Jaroslaw Chormanski & Dennis Trolle & Gitte Blicher-Mathiesen & Ruth Grant & Alexander Engebretsen & Ignacy Kardel & Hans Estrup Andersen, 2017. "Modelling Nutrient Load Changes from Fertilizer Application Scenarios in Six Catchments around the Baltic Sea," Agriculture, MDPI, vol. 7(5), pages 1-17, May.
    12. Jiawei Li & Junyou Liu, 2022. "Predicting Freshwater Microbial Pollution Using a Spatial Model: Transferability between Catchments," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    13. Danvi, Alexandre & Giertz, Simone & Zwart, Sander J. & Diekkrüger, Bernd, 2017. "Comparing water quantity and quality in three inland valley watersheds with different levels of agricultural development in central Benin," Agricultural Water Management, Elsevier, vol. 192(C), pages 257-270.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    2. V. Kanakoudis & S. Tsitsifli & T. Azariadi, 2015. "Overview of the River Basin Management Plans Developed in Greece Under the Context of the Water Framework Directive 2000/60/EC Focusing on the Economic Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3149-3174, July.
    3. K. Papapetridis & E. Paleologos, 2012. "Sampling Frequency of Groundwater Monitoring and Remediation Delay at Contaminated Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2673-2688, July.
    4. Bechtold, Iris & Kohne, Sigrid & Youssef, Mohamed A. & Lennartz, Bernd & Skaggs, R. Wayne, 2007. "Simulating nitrogen leaching and turnover in a subsurface-drained grassland receiving animal manure in Northern Germany using DRAINMOD-N II," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 30-44, October.
    5. Miguel Rodríguez-Rodríguez & José Benavente, 2008. "Definition of Wetland Typology for Hydro-morphological Elements Within the WFD. A Case Study from Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 797-821, July.
    6. Aki Artimo & Sami Saraperä & Iikka Ylander, 2008. "Methods for Integrating an Extensive Geodatabase with 3D Modeling and Data Management Tools for the Virttaankangas Artificial Recharge Project, Southwestern Finland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1723-1739, December.
    7. Revuelta-Acosta, J.D. & Flanagan, D.C. & Engel, B.A. & King, K.W., 2021. "Improvement of the Water Erosion Prediction Project (WEPP) model for quantifying field scale subsurface drainage discharge," Agricultural Water Management, Elsevier, vol. 244(C).
    8. Nausch, Monika & Woelk, Jana & Kahle, Petra & Nausch, Günther & Leipe, Thomas & Lennartz, Bernd, 2017. "Phosphorus fractions in discharges from artificially drained lowland catchments (Warnow River, Baltic Sea)," Agricultural Water Management, Elsevier, vol. 187(C), pages 77-87.
    9. Tóth, György & Rman, Nina & Ágnes, Rotár-Szalkai & Kerékgyártó, Tamás & Szőcs, Teodóra & Lapanje, Andrej & Černák, Radovan & Remsík, Anton & Schubert, Gerhard & Nádor, Annamária, 2016. "Transboundary fresh and thermal groundwater flows in the west part of the Pannonian Basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 439-454.
    10. Janssen, Manon & Frings, Johanna & Lennartz, Bernd, 2018. "Effect of grass buffer strips on nitrate export from a tile-drained field site," Agricultural Water Management, Elsevier, vol. 208(C), pages 318-325.
    11. Tiemeyer, B. & Kahle, P. & Lennartz, B., 2009. "Phosphorus losses from an artificially drained rural lowland catchment in North-Eastern Germany," Agricultural Water Management, Elsevier, vol. 96(4), pages 677-690, April.
    12. Hesse, Cornelia & Krysanova, Valentina & Päzolt, Jens & Hattermann, Fred F., 2008. "Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality," Ecological Modelling, Elsevier, vol. 218(1), pages 135-148.
    13. Stefan Koch & Andreas Bauwe & Bernd Lennartz, 2013. "Application of the SWAT Model for a Tile-Drained Lowland Catchment in North-Eastern Germany on Subbasin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 791-805, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:2:p:317-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.