IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i11p1915-1922.html
   My bibliography  Save this article

Soil properties and their spatial pattern in an oasis on the lower reaches of the Tarim River, northwest China

Author

Listed:
  • Zhou, H.H.
  • Chen, Y.N.
  • Li, W.H.

Abstract

In this study, classical, geostatistical methods and a geographical information system have been used to identify soil properties including soil organic carbon (SOC), total nitrogen (total N), salt content (SC) and soil moisture (SM), and their spatial variation as well as their relationships with groundwater, land use, and soil texture. The data came from 36 soil samples from 0 to 20Â cm depth, and 36 groundwater samples in the Tikanlik Oasis on the lower reaches of the Tarim River, northwest China. The objective was to provide a scientific basis for understanding the heterogeneity of the spatial distribution of soil properties on a large scale with the goal of accelerating the sustainable development of agriculture in the oasis. The results showed that the SC and SM of the surface soil varied greatly, but the SOC and total N varied very little. A possible reason for the low variability of SOC and total N was the relatively consistent human activities within the typical agricultural oasis with more than 75% land used as cropland and orchards, because there was no significant effect of land use types on soil total N and SOC. Geostatistical analysis and the kriging estimator showed that SC and SM had a strong spatial autocorrelation. One-way ANOVA and LSD suggested that land use was the main structural indicator that resulted in the spatial autocorrelation of SC and SM within the 0-20Â cm soil depth through its significant differences in soil texture, irrigation and groundwater. In particular, croplands and orchards had significantly higher SM, silt and clay particle percentages and lower SC compared to other land uses due to regular irrigation. Additionally, irrigation could effectively relieve the degree of the hazard from soil salt and soil water stress in cropland.

Suggested Citation

  • Zhou, H.H. & Chen, Y.N. & Li, W.H., 2010. "Soil properties and their spatial pattern in an oasis on the lower reaches of the Tarim River, northwest China," Agricultural Water Management, Elsevier, vol. 97(11), pages 1915-1922, November.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:11:p:1915-1922
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00235-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, G. & Li, Y.P. & Huang, G.H. & Liu, J. & Fan, Y.R., 2016. "Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 166(C), pages 53-69.
    2. Rumi Wang & Runyan Zou & Jianmei Liu & Luo Liu & Yueming Hu, 2021. "Spatial Distribution of Soil Nutrients in Farmland in a Hilly Region of the Pearl River Delta in China Based on Geostatistics and the Inverse Distance Weighting Method," Agriculture, MDPI, vol. 11(1), pages 1-12, January.
    3. Huang, Y. & Li, Y.P. & Chen, X. & Ma, Y.G., 2012. "Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China," Agricultural Water Management, Elsevier, vol. 107(C), pages 74-85.
    4. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    5. Li Xu & Hongru Du & Xiaolei Zhang, 2019. "Spatial Distribution Characteristics of Soil Salinity and Moisture and Its Influence on Agricultural Irrigation in the Ili River Valley, China," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    6. Fan Yang & Guangxin Zhang & Xiongrui Yin & Zhijun Liu, 2011. "Field-Scale Spatial Variation of Saline-Sodic Soil and Its Relation with Environmental Factors in Western Songnen Plain of China," IJERPH, MDPI, vol. 8(2), pages 1-14, January.
    7. Güler, Mustafa & Arslan, Hakan & Cemek, Bilal & Erşahin, Sabit, 2014. "Long-term changes in spatial variation of soil electrical conductivity and exchangeable sodium percentage in irrigated mesic ustifluvents," Agricultural Water Management, Elsevier, vol. 135(C), pages 1-8.
    8. Xinhu Li & Min Guo, 2022. "The Impact of Salinization and Wind Erosion on the Texture of Surface Soils: An Investigation of Paired Samples from Soils with and without Salt Crust," Land, MDPI, vol. 11(7), pages 1-15, June.
    9. Nursaç Serda Kaya & Barış Özkan & Orhan Dengiz & İnci Demirağ Turan, 2022. "Digital mapping and spatial variability of soil quality ındex for desertification in the Akarçay Basin under the semi-arid terrestrial ecosystem using neutrosophic fuzzy-AHP approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2101-2132, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:11:p:1915-1922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.