IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i8p1181-1190.html
   My bibliography  Save this article

Simulations of multipurpose water availability in a semi-arid catchment under different management strategies

Author

Listed:
  • Burte, Julien
  • Jamin, Jean-Yves
  • Coudrain, Anne
  • Frischkorn, Horst
  • Martins, Eduardo Sávio

Abstract

In the semi-arid Brazilian Northeast, the exploitation of alluvial aquifers for irrigation and domestic supply to rural communities over the last 10 years has upset the traditional mechanisms of water resources management. In the Forquilha watershed (221km2; 5°17''S, 39°30''W), the two main water resources are reservoirs (with a capacity exceeding 0.9-6.7x106m3), used for domestic water supply only, and an alluvial aquifer (2.3x106m3), used for irrigation and domestic water supply. From 1998 to 2006, the irrigated area with alluvial groundwater increased from 0 to 75ha, and the fraction of population supplied through domestic water networks, using reservoirs and the aquifer, increased from 1% to 70%. Based on physical and socioeconomic issues, three main water territories have been defined ("Aquifer", "Reservoirs", and "Disperse Habitat"). Considering the next 30 years with a realistic population growth, three hypotheses regarding irrigated area (i.e., 0, 75, or 150ha), and several possible water-management scenarios, hydrological balance models were built and used to simulate the different impacts on water resource availability and salinity. Simulation results showed that, in all cases, releases from the upstream main reservoir are necessary to keep reservoir salinity below 0.7gL-1 and for guaranteeing domestic needs in the whole watershed. As a consequence, a management approach that takes into account the interrelations among the three territories is necessary. Moreover, the simulations showed that the area of irrigated fields cannot exceed the current extent (75ha), or serious restrictions on water availability and salinity will take place. Moreover, important socioeconomic problems are expected, including a high cost of palliative water supply with tank trucks from external sources.

Suggested Citation

  • Burte, Julien & Jamin, Jean-Yves & Coudrain, Anne & Frischkorn, Horst & Martins, Eduardo Sávio, 2009. "Simulations of multipurpose water availability in a semi-arid catchment under different management strategies," Agricultural Water Management, Elsevier, vol. 96(8), pages 1181-1190, August.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:8:p:1181-1190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00077-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Srdjevic & Y. Medeiros & A. Faria, 2004. "An Objective Multi-Criteria Evaluation of Water Management Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(1), pages 35-54, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hertzog, Thomas & Poussin, Jean-Christophe & Tangara, Bréhima & Kouriba, Indé & Jamin, Jean-Yves, 2014. "A role playing game to address future water management issues in a large irrigated system: Experience from Mali," Agricultural Water Management, Elsevier, vol. 137(C), pages 1-14.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    2. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.
    3. Rocine Carvalho & Alessandra Magrini, 2006. "Conflicts over Water Resource Management in Brazil: A Case Study of Inter-Basin Transfers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(2), pages 193-213, April.
    4. Ahamd Radmehr & Shahab Araghinejad, 2015. "Flood Vulnerability Analysis by Fuzzy Spatial Multi Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4427-4445, September.
    5. Łatuszyńska Anna, 2014. "Multiple-Criteria Decision Analysis Using Topsis Method For Interval Data In Research Into The Level Of Information Society Development," Folia Oeconomica Stetinensia, Sciendo, vol. 13(2), pages 63-76, July.
    6. Cem P. Cetinkaya & Mert Can Gunacti, 2018. "Multi-Criteria Analysis of Water Allocation Scenarios in a Water Scarce Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2867-2884, June.
    7. José Ribas, 2014. "An Assessment of Conflicting Intentions in the Use of Multipurpose Water Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3989-4000, September.
    8. Raoof Mostafazadeh & Amir Sadoddin & Abdolreza Bahremand & Vahed Berdi Sheikh & Arash Zare Garizi, 2017. "Scenario analysis of flood control structures using a multi-criteria decision-making technique in Northeast Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1827-1846, July.
    9. Mehrdad Ghorbani Mooselu & Mohammad Reza Nikoo & Nooshin Bakhtiari Rayani & Azizallah Izady, 2019. "Fuzzy Multi-Objective Simulation-Optimization of Stepped Spillways Considering Flood Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2261-2275, May.
    10. Stefan Hajkowicz & Kerry Collins, 2007. "A Review of Multiple Criteria Analysis for Water Resource Planning and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1553-1566, September.
    11. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    12. Kobryń Andrzej & Prystrom Joanna, 2016. "A Data Pre-Processing Model for the Topsis Method," Folia Oeconomica Stetinensia, Sciendo, vol. 16(2), pages 219-235, December.
    13. Elena Arce, María & Saavedra, Ángeles & Míguez, José L. & Granada, Enrique, 2015. "The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 924-932.
    14. Jenq-Tzong Shiau & Hui-Ting Hsu, 2016. "Suitability of ANN-Based Daily Streamflow Extension Models: a Case Study of Gaoping River Basin, Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1499-1513, March.
    15. Wang, Endong & Alp, Neslihan & Shi, Jonathan & Wang, Chao & Zhang, Xiaodong & Chen, Hong, 2017. "Multi-criteria building energy performance benchmarking through variable clustering based compromise TOPSIS with objective entropy weighting," Energy, Elsevier, vol. 125(C), pages 197-210.
    16. Siyu Zeng & Jining Chen & Ping Fu, 2008. "Strategic Zoning for Urban Wastewater Reuse in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1297-1309, September.
    17. S. Toosi & J. Samani, 2012. "Evaluating Water Transfer Projects Using Analytic Network Process (ANP)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1999-2014, May.
    18. Babak Zolghadr-Asli & Omid Bozorg-Haddad & Maedeh Enayati & Xuefeng Chu, 2021. "A review of 20-year applications of multi-attribute decision-making in environmental and water resources planning and management," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14379-14404, October.
    19. Omid Bozorg-Haddad & Pouria Yari & Mohammad Delpasand & Xuefeng Chu, 2022. "Reservoir operation under influence of the joint uncertainty of inflow and evaporation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2914-2940, February.
    20. S. Razavi Toosi & J. Samani, 2014. "A New Integrated MADM Technique Combined with ANP, FTOPSIS and Fuzzy Max-Min Set Method for Evaluating Water Transfer Projects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4257-4272, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:8:p:1181-1190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.