IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i6p955-962.html
   My bibliography  Save this article

Variability in energy partitioning and resistance parameters for a vineyard in northwest China

Author

Listed:
  • Li, Sien
  • Tong, Ling
  • Li, Fusheng
  • Zhang, Lu
  • Zhang, Baozhong
  • Kang, Shaozhong

Abstract

Grapevines are extensively grown in the semiarid and arid regions, but little information is available on the variability of energy partitioning and resistance parameters for the vineyard. To address this question, an eddy covariance system was applied to measure energy balance over a vineyard in northwest China during 2005-2006. Result indicated that 2-year average Bowen ratio ([beta]) of vineyard was 1.0, canopy resistance (rc) 289.3sm-1, aerodynamic resistance (ra) 9.7sm-1 and climatological resistance (ri) 117sm-1. This implied that the annual energy was split almost equally between sensible heat and latent heat. Compared to the corresponding values in other ecosystems reported by Wilson et al. [Wilson, K.B., Baldocchi, D.D., Aubinet, M., Berbigier, P., Bernhofer, C., Dolman, H., Falge, E., Field, C., Goldstein, A., Granier, A., Grelle, A., Halldor, T., Hollinger, D., Katul, G., Law, B.E., Lindroth, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., Verma, S., Vesala, T., Wofsy, S., 2002. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resource Research 38, 1294-1305.], the vineyard had a higher [beta], rc and ri than deciduous forests, corn and soybean, and grassland. Such difference was mainly attributed to (1) serious water stress in 2005, which resulted in a greater rc up to 364.4sm-1; (2) sparse canopy with row spacing of 2.9m and plant spacing of 1.8m; (3) warm-dry climate and high attitude (1581m) along with higher ri and lower psychrometer (54PaK-1) in the arid region of northwest China. These characters of vineyard revealed varying process of energy partitioning and surface resistance, and provided a scientific basis in understanding and modeling water and energy balance for the vineyard in the semiarid and arid regions.

Suggested Citation

  • Li, Sien & Tong, Ling & Li, Fusheng & Zhang, Lu & Zhang, Baozhong & Kang, Shaozhong, 2009. "Variability in energy partitioning and resistance parameters for a vineyard in northwest China," Agricultural Water Management, Elsevier, vol. 96(6), pages 955-962, June.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:6:p:955-962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00019-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Sien & Kang, Shaozhong & Li, Fusheng & Zhang, Lu & Zhang, Baozhong, 2008. "Vineyard evaporative fraction based on eddy covariance in an arid desert region of Northwest China," Agricultural Water Management, Elsevier, vol. 95(8), pages 937-948, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yanqun & Kang, Shaozhong & Ward, Eric J. & Ding, Risheng & Zhang, Xin & Zheng, Rui, 2011. "Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: Dynamics and influential factors," Agricultural Water Management, Elsevier, vol. 98(8), pages 1207-1214, May.
    2. Jiao, Linjie & Ding, Risheng & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Li, Sien, 2018. "A comparison of energy partitioning and evapotranspiration over closed maize and sparse grapevine canopies in northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 251-260.
    3. Rahman, Md Masudur & Zhang, Wanchang & Wang, Kai, 2019. "Assessment on surface energy imbalance and energy partitioning using ground and satellite data over a semi-arid agricultural region in north China," Agricultural Water Management, Elsevier, vol. 213(C), pages 245-259.
    4. Rana, G. & Katerji, N. & Lazzara, P. & Ferrara, R.M., 2012. "Operational determination of daily actual evapotranspiration of irrigated tomato crops under Mediterranean conditions by one-step and two-step models: Multiannual and local evaluations," Agricultural Water Management, Elsevier, vol. 115(C), pages 285-296.
    5. Galleguillos, Mauricio & Jacob, Frédéric & Prévot, Laurent & Faúndez, Carlos & Bsaibes, Aline, 2017. "Estimation of actual evapotranspiration over a rainfed vineyard using a 1-D water transfer model: A case study within a Mediterranean watershed," Agricultural Water Management, Elsevier, vol. 184(C), pages 67-76.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Lei & Zhao, Peng & Kang, Shaozhong & Li, Sien & Tong, Ling & Ding, Risheng & Lu, Hongna, 2019. "Surface soil water content dominates the difference between ecosystem and canopy water use efficiency in a sparse vineyard," Agricultural Water Management, Elsevier, vol. 226(C).
    2. Yang, Guijun & Pu, Ruiliang & Zhao, Chunjiang & Xue, Xuzhang, 2014. "Estimating high spatiotemporal resolution evapotranspiration over a winter wheat field using an IKONOS image based complementary relationship and Lysimeter observations," Agricultural Water Management, Elsevier, vol. 133(C), pages 34-43.
    3. Jiao, Linjie & Ding, Risheng & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Li, Sien, 2018. "A comparison of energy partitioning and evapotranspiration over closed maize and sparse grapevine canopies in northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 251-260.
    4. Galleguillos, Mauricio & Jacob, Frédéric & Prévot, Laurent & Faúndez, Carlos & Bsaibes, Aline, 2017. "Estimation of actual evapotranspiration over a rainfed vineyard using a 1-D water transfer model: A case study within a Mediterranean watershed," Agricultural Water Management, Elsevier, vol. 184(C), pages 67-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:6:p:955-962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.