IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v133y2014icp34-43.html
   My bibliography  Save this article

Estimating high spatiotemporal resolution evapotranspiration over a winter wheat field using an IKONOS image based complementary relationship and Lysimeter observations

Author

Listed:
  • Yang, Guijun
  • Pu, Ruiliang
  • Zhao, Chunjiang
  • Xue, Xuzhang

Abstract

Mapping high spatiotemporal resolution evapotranspiration (ET) over large areas is important for water resources planning, precision irrigation and monitoring water use efficiency. However, both traditional field measurement and aerodynamic estimation mainly focus on obtaining local ET. Remote sensing observations usually can be used to retrieve instantaneous ET at a low spatial resolution over region or global scale. Therefore, using field measurements and high resolution image data to generate high spatiotemporal resolution ET is becoming an important research direction. In this study, the complementary relationship model (CR) was tested together with meteorological data to estimate actual ET, and the results were validated by the Lysimeter observation. Furthermore, CR model combined with high resolution IKONOS data was used to estimate instantaneous field scale ET that was then transferred to daily ET. The cumulative evapotranspiration (ET) of winter wheat during the reproductive period from March through June of 2011 was 469.12mm, essentially corresponding to the annual precipitation in the study area. The highest accuracy of estimating ET by CR model with remote sensing data was in May (R2=0.863, RMSE=0.103mm). The transferred daily ET by a self-preservation of evaporative fraction (EF) approach from the CR modeling instantaneous ET was consistent with The Lysimeter measurements for all four months, March through June, 2011 (R2=0.937, RMSE=0.668mm). The experimental results demonstrate that CR model can be used to accurately estimate actual ET with both meteorological data and high resolution remote sensing data at a regional scale.

Suggested Citation

  • Yang, Guijun & Pu, Ruiliang & Zhao, Chunjiang & Xue, Xuzhang, 2014. "Estimating high spatiotemporal resolution evapotranspiration over a winter wheat field using an IKONOS image based complementary relationship and Lysimeter observations," Agricultural Water Management, Elsevier, vol. 133(C), pages 34-43.
  • Handle: RePEc:eee:agiwat:v:133:y:2014:i:c:p:34-43
    DOI: 10.1016/j.agwat.2013.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413003053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Sien & Kang, Shaozhong & Li, Fusheng & Zhang, Lu & Zhang, Baozhong, 2008. "Vineyard evaporative fraction based on eddy covariance in an arid desert region of Northwest China," Agricultural Water Management, Elsevier, vol. 95(8), pages 937-948, August.
    2. Ding, Risheng & Kang, Shaozhong & Li, Fusheng & Zhang, Yanqun & Tong, Ling & Sun, Qingyu, 2010. "Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China," Agricultural Water Management, Elsevier, vol. 98(1), pages 87-95, December.
    3. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(1), pages 193-194, February.
    4. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(2), pages 541-545, April.
    5. Jabloun, M. & Sahli, A., 2008. "Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia," Agricultural Water Management, Elsevier, vol. 95(6), pages 707-715, June.
    6. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(4), pages 1007-1017, August.
    7. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1461-1465, December.
    8. Batchelor, Charles, 1999. "Improving water use efficiency as part of integrated catchment management," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 249-263, May.
    9. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1273-1289, October.
    10. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(3), pages 819-821, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xun & Zhang, Wenjing & Liu, Wen & Zuo, Qiang & Shi, Jianchu & Yan, Xudong & Zhang, Hongfei & Xue, Xuzhang & Wang, Lichun & Zhang, Mo & Ben-Gal, Alon, 2017. "Root-weighted soil water status for plant water deficit index based irrigation scheduling," Agricultural Water Management, Elsevier, vol. 189(C), pages 137-147.
    2. Baik, Jongjin & Choi, Minha, 2015. "Evaluation of geostationary satellite (COMS) based Priestley–Taylor evapotranspiration," Agricultural Water Management, Elsevier, vol. 159(C), pages 77-91.
    3. Jin, Xiuliang & Yang, Guijun & Xue, Xuzhang & Xu, Xingang & Li, Zhenhai & Feng, Haikuan, 2017. "Validation of two Huanjing-1A/B satellite-based FAO-56 models for estimating winter wheat crop evapotranspiration during mid-season," Agricultural Water Management, Elsevier, vol. 189(C), pages 27-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, J.G. & Cratchley, C.R. & Kay, J.A. & Casterad, M.A. & Martnez-Cob, A. & Domnguez, R., 2009. "Evaluation of satellite evapotranspiration estimates using ground-meteorological data available for the Flumen District into the Ebro Valley of N.E. Spain," Agricultural Water Management, Elsevier, vol. 96(4), pages 638-652, April.
    2. Wichelns, Dennis, 2003. "Enhancing water policy discussions by including analysis of non-water inputs and farm-level constraints," Agricultural Water Management, Elsevier, vol. 62(2), pages 93-103, September.
    3. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    4. Libura, Marek, 2007. "On the adjustment problem for linear programs," European Journal of Operational Research, Elsevier, vol. 183(1), pages 125-134, November.
    5. Christophe Loussouarn & Carine Franc & Yann Videau & Julien Mousquès, 2021. "Can General Practitioners Be More Productive? The Impact of Teamwork and Cooperation with Nurses on GP Activities," Health Economics, John Wiley & Sons, Ltd., vol. 30(3), pages 680-698, March.
    6. Tschakert, Petra, 2016. "Shifting Discourses of Vilification and the Taming of Unruly Mining Landscapes in Ghana," World Development, Elsevier, vol. 86(C), pages 123-132.
    7. Isabelle Boutron & Peter John & David J. Torgerson, 2010. "Reporting Methodological Items in Randomized Experiments in Political Science," The ANNALS of the American Academy of Political and Social Science, , vol. 628(1), pages 112-131, March.
    8. Ben Slimane, Faten & Padilla Angulo, Laura, 2019. "Strategic change and corporate governance: Evidence from the stock exchange industry," Journal of Business Research, Elsevier, vol. 103(C), pages 206-218.
    9. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    10. Natalia Nikolaevna Natocheeva* & Yuri Alexandrovich Rovensky & Yuri Yuryevich Rusanov & Tatiana Viktorovna Belyanchikova & Anna Anatolevna Staurskaya, 2018. "Optimizing Variability of Approaches to Regulatory Financing of Higher Education Services," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 221-227:3.
    11. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    12. Andy Hall, 2005. "Capacity development for agricultural biotechnology in developing countries: an innovation systems view of what it is and how to develop it," Journal of International Development, John Wiley & Sons, Ltd., vol. 17(5), pages 611-630.
    13. Athinoula A. Kosti & Simon Colreavy-Donnelly & Fabio Caraffini & Zacharias A. Anastassi, 2020. "Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients," Mathematics, MDPI, vol. 8(3), pages 1-12, March.
    14. Bruno Frey, 2005. "Problems with Publishing: Existing State and Solutions," European Journal of Law and Economics, Springer, vol. 19(2), pages 173-190, April.
    15. Lan, Heng-you, 2021. "Approximation-solvability of population biology systems based on p-Laplacian elliptic inequalities with demicontinuous strongly pseudo-contractive operators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    16. Shelly Jeffcott & Nick Pidgeon & Andrew Weyman & John Walls, 2006. "Risk, Trust, and Safety Culture in U.K. Train Operating Companies," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1105-1121, October.
    17. Rainer Niemann, 2004. "Asymmetric Taxation and Cross-Border Investment Decisions," CESifo Working Paper Series 1219, CESifo.
    18. Zhenghua Gu & Xiaomeng Cao & Guoliang Liu & Weizhen Lu, 2014. "Optimizing Operation Rules of Sluices in River Networks Based on Knowledge-driven and Data-driven Mechanism," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3455-3469, September.
    19. Ian N. Gregory & Paul S. Ell, 2005. "Breaking the boundaries: geographical approaches to integrating 200 years of the census," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 419-437, March.
    20. Alexis Comber & Paul Harris, 2018. "Geographically weighted elastic net logistic regression," Journal of Geographical Systems, Springer, vol. 20(4), pages 317-341, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:133:y:2014:i:c:p:34-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.