IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i6p939-945.html
   My bibliography  Save this article

Simulation of artificial neural network model for trunk sap flow of Pyrus pyrifolia and its comparison with multiple-linear regression

Author

Listed:
  • Liu, Xiaozhi
  • Kang, Shaozhong
  • Li, Fusheng

Abstract

Trunk sap flow of tree is an important index in the irrigation decision of orchard. On the basis of the measured sap flow (SF) of pear tree (Pyrus pyrifolia) in the field, the multiple-linear regression for simulating the SF was obtained after analyzing the relationships between the SF and its affecting factors in this study and an artificial neural network (ANN) technique was applied to construct a nonlinear mapping to simulate the SF, then the simulated SF by two models was, respectively, compared to the measured value. Results showed that trunk SF had significant relationship with the vapour pressure deficit (VPD) in the single-variable analysis method but with soil volumetric water content ([theta]) using the ANN models with default of different variables. The correlation coefficient (R2), mean relative error (MRE) and root mean square error (RMSE) between the measured and simulated sap flows by the ANN model developed by taking VPD, solar radiation (Sr), air temperature (T), wind speed (Ws), [theta], leaf area index (LAI) as the input variables were 0.953, 10.0% and 5.33Ld-1, respectively, and the simulation precision of ANN model was superior to that of multiple-linear regression due to its better performance for the nonlinear relationship between trunk SF and its affecting factors, thus ANN model can simulate trunk sap flow and then may help the efficient water management of orchard.

Suggested Citation

  • Liu, Xiaozhi & Kang, Shaozhong & Li, Fusheng, 2009. "Simulation of artificial neural network model for trunk sap flow of Pyrus pyrifolia and its comparison with multiple-linear regression," Agricultural Water Management, Elsevier, vol. 96(6), pages 939-945, June.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:6:p:939-945
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00017-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarangi, A. & Bhattacharya, A.K., 2005. "Comparison of Artificial Neural Network and regression models for sediment loss prediction from Banha watershed in India," Agricultural Water Management, Elsevier, vol. 78(3), pages 195-208, December.
    2. Gong, Daozhi & Kang, Shaozhong & Zhang, Lu & Du, Taisheng & Yao, Limin, 2006. "A two-dimensional model of root water uptake for single apple trees and its verification with sap flow and soil water content measurements," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 119-129, May.
    3. Sharma, V. & Negi, S. C. & Rudra, R. P. & Yang, S., 2003. "Neural networks for predicting nitrate-nitrogen in drainage water," Agricultural Water Management, Elsevier, vol. 63(3), pages 169-183, December.
    4. Green, S. R. & Clothier, B. E. & McLeod, D. J., 1997. "The response of sap flow in apple roots to localised irrigation," Agricultural Water Management, Elsevier, vol. 33(1), pages 63-78, May.
    5. Nicolas, E. & Torrecillas, A. & Ortuno, M.F. & Domingo, R. & Alarcon, J.J., 2005. "Evaluation of transpiration in adult apricot trees from sap flow measurements," Agricultural Water Management, Elsevier, vol. 72(2), pages 131-145, March.
    6. Fernandez, J. E. & Palomo, M. J. & Diaz-Espejo, A. & Clothier, B. E. & Green, S. R. & Giron, I. F. & Moreno, F., 2001. "Heat-pulse measurements of sap flow in olives for automating irrigation: tests, root flow and diagnostics of water stress," Agricultural Water Management, Elsevier, vol. 51(2), pages 99-123, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chunwei & Du, Taisheng & Li, Fusheng & Kang, Shaozhong & Li, Sien & Tong, Ling, 2012. "Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 104(C), pages 193-202.
    2. Zbigniew Leszczyński & Tomasz Jasiński, 2020. "Comparison of Product Life Cycle Cost Estimating Models Based on Neural Networks and Parametric Techniques—A Case Study for Induction Motors," Sustainability, MDPI, vol. 12(20), pages 1-14, October.
    3. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Wu, Lifeng & Zou, Yufeng & Zhuang, Qianlai, 2021. "Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 249(C).
    4. Fan, Junliang & Zheng, Jing & Wu, Lifeng & Zhang, Fucang, 2021. "Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    2. Wang, Di & Wang, Li, 2017. "Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China," Agricultural Water Management, Elsevier, vol. 191(C), pages 1-15.
    3. Green, Steve R. & Kirkham, M.B. & Clothier, Brent E., 2006. "Root uptake and transpiration: From measurements and models to sustainable irrigation," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 165-176, November.
    4. Kaneko, Teruko & Gould, Nick & Campbell, David & Snelgar, Patrick & Clearwater, Michael J., 2022. "The effect of soil type, fruit load and shaded area on ‘Hass’ avocado (Persea americana Mill.) water use and crop coefficients," Agricultural Water Management, Elsevier, vol. 264(C).
    5. Zou, Ping & Yang, Jingsong & Fu, Jianrong & Liu, Guangming & Li, Dongshun, 2010. "Artificial neural network and time series models for predicting soil salt and water content," Agricultural Water Management, Elsevier, vol. 97(12), pages 2009-2019, November.
    6. Sarangi, A. & Singh, Man & Bhattacharya, A.K. & Singh, A.K., 2006. "Subsurface drainage performance study using SALTMOD and ANN models," Agricultural Water Management, Elsevier, vol. 84(3), pages 240-248, August.
    7. Sokalska, D.I. & Haman, D.Z. & Szewczuk, A. & Sobota, J. & Deren, D., 2009. "Spatial root distribution of mature apple trees under drip irrigation system," Agricultural Water Management, Elsevier, vol. 96(6), pages 917-924, June.
    8. Pereira, Antonio Roberto & Green, Steve & Villa Nova, Nilson Augusto, 2006. "Penman-Monteith reference evapotranspiration adapted to estimate irrigated tree transpiration," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 153-161, May.
    9. Anctil, François & Filion, Mélanie & Tournebize, Julien, 2009. "A neural network experiment on the simulation of daily nitrate-nitrogen and suspended sediment fluxes from a small agricultural catchment," Ecological Modelling, Elsevier, vol. 220(6), pages 879-887.
    10. Ayyoub, A. & Er-Raki, S. & Khabba, S. & Merlin, O. & Ezzahar, J. & Rodriguez, J.C. & Bahlaoui, A. & Chehbouni, A., 2017. "A simple and alternative approach based on reference evapotranspiration and leaf area index for estimating tree transpiration in semi-arid regions," Agricultural Water Management, Elsevier, vol. 188(C), pages 61-68.
    11. Liu, Chunwei & Du, Taisheng & Li, Fusheng & Kang, Shaozhong & Li, Sien & Tong, Ling, 2012. "Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 104(C), pages 193-202.
    12. Pavitra Kumar & Sai Hin Lai & Jee Khai Wong & Nuruol Syuhadaa Mohd & Md Rowshon Kamal & Haitham Abdulmohsin Afan & Ali Najah Ahmed & Mohsen Sherif & Ahmed Sefelnasr & Ahmed El-Shafie, 2020. "Review of Nitrogen Compounds Prediction in Water Bodies Using Artificial Neural Networks and Other Models," Sustainability, MDPI, vol. 12(11), pages 1-26, May.
    13. Paresh Shirsath & Anil Singh, 2010. "A Comparative Study of Daily Pan Evaporation Estimation Using ANN, Regression and Climate Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1571-1581, June.
    14. Nicolas, E. & Torrecillas, A. & Ortuno, M.F. & Domingo, R. & Alarcon, J.J., 2005. "Evaluation of transpiration in adult apricot trees from sap flow measurements," Agricultural Water Management, Elsevier, vol. 72(2), pages 131-145, March.
    15. Greven, Marc & Neal, Sue & Green, Steve & Dichio, Bartolomeo & Clothier, Brent, 2009. "The effects of drought on the water use, fruit development and oil yield from young olive trees," Agricultural Water Management, Elsevier, vol. 96(11), pages 1525-1531, November.
    16. Siakou, M. & Bruggeman, A. & Eliades, M. & Zoumides, C. & Djuma, H. & Kyriacou, M.C. & Emmanouilidou, M.G. & Spyros, A. & Manolopoulou, E. & Moriana, A., 2021. "Effects of deficit irrigation on ‘Koroneiki’ olive tree growth, physiology and olive oil quality at different harvest dates," Agricultural Water Management, Elsevier, vol. 258(C).
    17. Martínez-Cob, A. & Faci, J.M., 2010. "Evapotranspiration of an hedge-pruned olive orchard in a semiarid area of NE Spain," Agricultural Water Management, Elsevier, vol. 97(3), pages 410-418, March.
    18. Chen, Dianyu & Wang, Youke & Liu, Shouyang & Wei, Xinguang & Wang, Xing, 2014. "Response of relative sap flow to meteorological factors under different soil moisture conditions in rainfed jujube (Ziziphus jujuba Mill.) plantations in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 136(C), pages 23-33.
    19. Sarangi, A. & Bhattacharya, A.K., 2005. "Comparison of Artificial Neural Network and regression models for sediment loss prediction from Banha watershed in India," Agricultural Water Management, Elsevier, vol. 78(3), pages 195-208, December.
    20. Rousseaux, M. Cecilia & Figuerola, Patricia I. & Correa-Tedesco, Guillermo & Searles, Peter S., 2009. "Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.) grove under two irrigation regimes in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 96(6), pages 1037-1044, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:6:p:939-945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.