IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v95y2008i3p259-270.html
   My bibliography  Save this article

In-season wheat root growth and soil water extraction in the Mediterranean environment of northern Syria

Author

Listed:
  • Izzi, G.
  • Farahani, H.J.
  • Bruggeman, A.
  • Oweis, T.Y.

Abstract

Wheat is the most important cereal crop in the semi-arid eastern Mediterranean region that includes northern Syria. Knowledge of wheat root depth and the vertical distribution during the winter growing season is needed for sound scheduling of irrigation and efficient use of water. This article reports evaluation of root development for three winter-grown bread (Triticum aestivum L.) and durum (Triticum turgidum L.) wheat under four soil water regimes (rainfed and full irrigation with two intermediate levels of 33 and 66% of full irrigation). Roots were sampled by soil coring to a depth of 0.75 m at four occasions during 2005-2006 growing season. Two distinct phases of root development were identified, a rapid downward penetration from emergence to end tillering phase, followed by a substantial root mass growth along the profile from tillering to mid-stem-elongation phase. Roots were detected as deep as 0.75 m during the initial rapid penetration, yet only 29% of the total seasonal root mass was developed. This downward penetration rate averaged 7 mm d-1 and produced 10.8 kg ha-1 d-1 of root dry-biomass. The bulging of root mass from tillering to mid-stem-elongation coincided with vigorous shoot growth, doubling root dry-biomass at a rate of 52 kg ha-1 d-1, compared to the seasonal root growth rate of 18.3 kg ha-1 d-1. A second-degree equation described the total root dry-biomass as a function of days after emergence (r2 = 0.85), whereas a simpler equation predicted it as a function of cumulative growing degree days (r2 = 0.85). The final grain yield was a strong function of irrigation regimes, varying from 3.0 to 6.5 t ha-1, but showed no correlation with root biomass which remained similar as soil water regimes changed. This observation must be viewed with care as it lacks statistical evidence. Results showed 90% of root mass at first irrigation (15 April) confined in the top 0.60-0.75 m soil in bread wheat. Presence of shallow restricting soil layers limited root depth of durum wheat to 0.45 m, yet total seasonal root mass and grain yield were comparable with non-restricted bread wheat. Most root growth occurred during the cool rainy season and prior to the late irrigation season. The root sampling is short of rigorous, but results complement the limited field data in literature collectively suggesting that irrigation following the rainy season may best be scheduled assuming a well developed root zone as deep as the effective soil depth within the top meter of soil.

Suggested Citation

  • Izzi, G. & Farahani, H.J. & Bruggeman, A. & Oweis, T.Y., 2008. "In-season wheat root growth and soil water extraction in the Mediterranean environment of northern Syria," Agricultural Water Management, Elsevier, vol. 95(3), pages 259-270, March.
  • Handle: RePEc:eee:agiwat:v:95:y:2008:i:3:p:259-270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(07)00266-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Heping & Oweis, Theib, 1999. "Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 38(3), pages 195-211, January.
    2. Sato, Takahiro & Abdalla, Osman S. & Oweis, Theib Y. & Sakuratani, Tetsuo, 2006. "The validity of predawn leaf water potential as an irrigation-timing indicator for field-grown wheat in northern Syria," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 223-236, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadi, Seyed Hamid & Plauborg, Finn & Andersen, Mathias N. & Sepaskhah, Ali Reza & Jensen, Christian R. & Hansen, Søren, 2011. "Effects of irrigation strategies and soils on field grown potatoes: Root distribution," Agricultural Water Management, Elsevier, vol. 98(8), pages 1280-1290, May.
    2. Li, Quanqi & Dong, Baodi & Qiao, Yunzhou & Liu, Mengyu & Zhang, Jiwang, 2010. "Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China," Agricultural Water Management, Elsevier, vol. 97(10), pages 1676-1682, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sato, Takahiro & Abdalla, Osman S. & Oweis, Theib Y. & Sakuratani, Tetsuo, 2006. "Effect of supplemental irrigation on leaf stomatal conductance of field-grown wheat in northern Syria," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 105-112, September.
    2. Liu, Jianchao & Feng, Hao & He, Jianqiang & Chen, Haixin & Ding, Dianyuan, 2018. "The effects of nitrogen and water stresses on the nitrogen-to-protein conversion factor of winter wheat," Agricultural Water Management, Elsevier, vol. 210(C), pages 217-223.
    3. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    4. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    5. Amir Tabarzad & Ali Asghar Ghaemi & Shahrokh Zand-parsa, 2016. "Barley Grain Yield and Protein Content Response to Deficit Irrigation and Sowing Dates in Semi-Arid Region," Modern Applied Science, Canadian Center of Science and Education, vol. 10(10), pages 193-193, October.
    6. Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
    7. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    8. Ilbeyi, Adem & Ustun, Haluk & Oweis, Theib & Pala, Mustafa & Benli, Bogachan, 2006. "Wheat water productivity and yield in a cool highland environment: Effect of early sowing with supplemental irrigation," Agricultural Water Management, Elsevier, vol. 82(3), pages 399-410, April.
    9. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    10. Araya, A. & Gowda, P.H. & Golden, B. & Foster, A.J. & Aguilar, J. & Currie, R. & Ciampitti, I.A. & Prasad, P.V.V., 2019. "Economic value and water productivity of major irrigated crops in the Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 214(C), pages 55-63.
    11. Sun, Hong-Yong & Liu, Chang-Ming & Zhang, Xi-Ying & Shen, Yan-Jun & Zhang, Yong-Qiang, 2006. "Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 211-218, September.
    12. Wu, Yang & Jia, Zhikuan & Ren, Xiaolong & Zhang, Yan & Chen, Xin & Bing, Haoyang & Zhang, Peng, 2015. "Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China," Agricultural Water Management, Elsevier, vol. 158(C), pages 1-9.
    13. Dong Guo & Chuanyong Chen & Baoyuan Zhou & Di Ma & William D. Batchelor & Xiao Han & Zaisong Ding & Mei Du & Ming Zhao & Ming Li & Wei Ma, 2022. "Drip Fertigation with Relatively Low Water and N Input Achieved Higher Grain Yield of Maize by Improving Pre- and Post-Silking Dry Matter Accumulation," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    14. Oweis, T. Y. & Hachum, A. Y., 2003. "Improving water productivity in the dry areas of West Asia and North Africa," IWMI Books, Reports H032642, International Water Management Institute.
    15. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    16. Aziiba Emmanuel Asibi & Falong Hu & Zhilong Fan & Qiang Chai, 2022. "Optimized Nitrogen Rate, Plant Density, and Regulated Irrigation Improved Grain, Biomass Yields, and Water Use Efficiency of Maize at the Oasis Irrigation Region of China," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    17. Metin Sezen, S. & Yazar, Attila, 2006. "Wheat yield response to line-source sprinkler irrigation in the arid Southeast Anatolia region of Turkey," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 59-76, March.
    18. Knowling, Matthew J. & Walker, Rob R. & Pellegrino, Anne & Edwards, Everard J. & Westra, Seth & Collins, Cassandra & Ostendorf, Bertram & Bennett, Bree, 2023. "Generalized water production relations through process-based modeling: A viticulture example," Agricultural Water Management, Elsevier, vol. 280(C).
    19. Oweis, Theib & Hachum, Ahmed, 2006. "Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 57-73, February.
    20. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Qiu, Rangjian & Chen, Renqiang & Gu, Feng, 2014. "Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition," Agricultural Water Management, Elsevier, vol. 146(C), pages 131-148.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:95:y:2008:i:3:p:259-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.