IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v65y2004i2p83-94.html
   My bibliography  Save this article

Potential nitrate losses under different agricultural practices in the pampas region, Argentina

Author

Listed:
  • Rimski-Korsakov, Helena
  • Rubio, Gerardo
  • Lavado, Raul S.

Abstract

No abstract is available for this item.

Suggested Citation

  • Rimski-Korsakov, Helena & Rubio, Gerardo & Lavado, Raul S., 2004. "Potential nitrate losses under different agricultural practices in the pampas region, Argentina," Agricultural Water Management, Elsevier, vol. 65(2), pages 83-94, March.
  • Handle: RePEc:eee:agiwat:v:65:y:2004:i:2:p:83-94
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(03)00220-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Izadi, B. & Ashraf, M. S. & Studer, D. & McCann, I. & King, B., 1996. "A simple model for the prediction of nitrate concentration in the potato root zone," Agricultural Water Management, Elsevier, vol. 30(1), pages 41-56, March.
    2. Cameira, M. R. & Fernando, R. M. & Pereira, L. S., 2003. "Monitoring water and NO3-N in irrigated maize fields in the Sorraia Watershed, Portugal," Agricultural Water Management, Elsevier, vol. 60(3), pages 199-216, May.
    3. Costa, J. L. & Massone, H. & Martinez, D. & Suero, E. E. & Vidal, C. M. & Bedmar, F., 2002. "Nitrate contamination of a rural aquifer and accumulation in the unsaturated zone," Agricultural Water Management, Elsevier, vol. 57(1), pages 33-47, September.
    4. Wu, JunJie & Babcock, Bruce A., 1997. "Evaluation of Nitrogen Runoff and Leaching Potential in the High Plains (An)," Staff General Research Papers Archive 1052, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiaoxin & Hu, Chunsheng & Delgado, Jorge A. & Zhang, Yuming & Ouyang, Zhiyun, 2007. "Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 137-147, April.
    2. Kurunc, A. & Ersahin, S. & Uz, B. Yetgin & Sonmez, N.K. & Uz, I. & Kaman, H. & Bacalan, G.E. & Emekli, Y., 2011. "Identification of nitrate leaching hot spots in a large area with contrasting soil texture and management," Agricultural Water Management, Elsevier, vol. 98(6), pages 1013-1019, April.
    3. Suresh Sharma & Indrajeet Chaubey, 2017. "Surface and Subsurface Transport of Nitrate Loss from the Selected Bioenergy Crop Fields: Systematic Review, Analysis and Future Directions," Agriculture, MDPI, vol. 7(3), pages 1-20, March.
    4. Aparicio, V. & Costa, J.L. & Zamora, M., 2008. "Nitrate leaching assessment in a long-term experiment under supplementary irrigation in humid Argentina," Agricultural Water Management, Elsevier, vol. 95(12), pages 1361-1372, December.
    5. Díaz de Astarloa, D.A. & Pengue, W.A., 2018. "Nutrients Metabolism of Agricultural Production in Argentina: NPK Input and Output Flows from 1961 to 2015," Ecological Economics, Elsevier, vol. 147(C), pages 74-83.
    6. Muschietti-Piana, Maria del Pilar & Cipriotti, Pablo Ariel & Urricariet, Susana & Peralta, Nahuel Raul & Niborski, Mauricio, 2018. "Using site-specific nitrogen management in rainfed corn to reduce the risk of nitrate leaching," Agricultural Water Management, Elsevier, vol. 199(C), pages 61-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tesfamariam, Eyob H. & Annandale, John G. & Steyn, Joachim M. & Stirzaker, Richard J. & Mbakwe, Ikenna, 2015. "Use of the SWB-Sci model for nitrogen management in sludge-amended land," Agricultural Water Management, Elsevier, vol. 152(C), pages 262-276.
    2. Guo, Huaming & Li, Guanghe & Zhang, Dayi & Zhang, Xu & Lu, Chang'ai, 2006. "Effects of water table and fertilization management on nitrogen loading to groundwater," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 86-98, April.
    3. Andrade, A.I.A.S.S. & Stigter, T.Y., 2009. "Multi-method assessment of nitrate and pesticide contamination in shallow alluvial groundwater as a function of hydrogeological setting and land use," Agricultural Water Management, Elsevier, vol. 96(12), pages 1751-1765, December.
    4. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Merchán, D. & Casalí, J. & Del Valle de Lersundi, J. & Campo-Bescós, M.A. & Giménez, R. & Preciado, B. & Lafarga, A., 2018. "Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 195(C), pages 120-132.
    6. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    7. A. Moratalla & J. Gómez-Alday & J. De las Heras & D. Sanz & S. Castaño, 2009. "Nitrate in the Water-Supply Wells in the Mancha Oriental Hydrogeological System (SE Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1621-1640, June.
    8. Ramos, Tiago B. & Darouich, Hanaa & Šimůnek, Jiří & Gonçalves, Maria C. & Martins, José C., 2019. "Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends," Agricultural Water Management, Elsevier, vol. 217(C), pages 265-281.
    9. Poch-Massegú, R. & Jiménez-Martínez, J. & Wallis, K.J. & Ramírez de Cartagena, F. & Candela, L., 2014. "Irrigation return flow and nitrate leaching under different crops and irrigation methods in Western Mediterranean weather conditions," Agricultural Water Management, Elsevier, vol. 134(C), pages 1-13.
    10. Jianqiang Deng & Xiaomin Chen & Zhenjie Du & Yong Zhang, 2011. "Soil Water Simulation and Predication Using Stochastic Models Based on LS-SVM for Red Soil Region of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2823-2836, September.
    11. Aparicio, V. & Costa, J.L. & Zamora, M., 2008. "Nitrate leaching assessment in a long-term experiment under supplementary irrigation in humid Argentina," Agricultural Water Management, Elsevier, vol. 95(12), pages 1361-1372, December.
    12. Stigter, T.Y. & Carvalho Dill, A.M.M. & Ribeiro, L. & Reis, E., 2006. "Impact of the shift from groundwater to surface water irrigation on aquifer dynamics and hydrochemistry in a semi-arid region in the south of Portugal," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 121-132, September.
    13. Eric Owusu Danquah & Yacob Beletse & Richard Stirzaker & Christopher Smith & Stephen Yeboah & Patricia Oteng-Darko & Felix Frimpong & Stella Ama Ennin, 2020. "Monitoring and Modelling Analysis of Maize ( Zea mays L.) Yield Gap in Smallholder Farming in Ghana," Agriculture, MDPI, vol. 10(9), pages 1-21, September.
    14. Fang Liu & Zhili Zhang & Jindun Xu, 2023. "Electrochemical Mechanisms and Optimization System of Nitrate Removal from Groundwater by Polymetallic Nanoelectrodes," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    15. Muschietti-Piana, Maria del Pilar & Cipriotti, Pablo Ariel & Urricariet, Susana & Peralta, Nahuel Raul & Niborski, Mauricio, 2018. "Using site-specific nitrogen management in rainfed corn to reduce the risk of nitrate leaching," Agricultural Water Management, Elsevier, vol. 199(C), pages 61-70.
    16. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Homaee, Mehdi & Asadi, Mohammad Esmaeil & Hoogenboom, Gerrit, 2009. "Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates," Agricultural Water Management, Elsevier, vol. 96(6), pages 946-954, June.
    17. Azad, Nasrin & Behmanesh, Javad & Rezaverdinejad, Vahid & Abbasi, Fariborz & Navabian, Maryam, 2018. "Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements," Agricultural Water Management, Elsevier, vol. 208(C), pages 344-356.
    18. Ramos, T.B. & Simionesei, L. & Jauch, E. & Almeida, C. & Neves, R., 2017. "Modelling soil water and maize growth dynamics influenced by shallow groundwater conditions in the Sorraia Valley region, Portugal," Agricultural Water Management, Elsevier, vol. 185(C), pages 27-42.
    19. Du, Huiying & Gao, Wenxuan & Li, Jiajia & Shen, Shizhou & Wang, Feng & Fu, Li & Zhang, Keqiang, 2019. "Effects of digested biogas slurry applicationmixed with irrigation water on nitrate leaching during wheat-maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 882-893.
    20. David Manuel-Navarrete & Gilberto Gallopín & Mariela Blanco & Martín Díaz-Zorita & Diego Ferraro & Hilda Herzer & Pedro Laterra & María Murmis & Guillermo Podestá & Jorge Rabinovich & Emilio Satorre &, 2009. "Multi-causal and integrated assessment of sustainability: the case of agriculturization in the Argentine Pampas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(3), pages 621-638, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:65:y:2004:i:2:p:83-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.