IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v53y2002i1-3p99-109.html
   My bibliography  Save this article

Lucerne pastures to sustain agricultural production in southwestern Australia

Author

Listed:
  • Latta, R. A.
  • Cocks, P. S.
  • Matthews, C.

Abstract

No abstract is available for this item.

Suggested Citation

  • Latta, R. A. & Cocks, P. S. & Matthews, C., 2002. "Lucerne pastures to sustain agricultural production in southwestern Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 99-109, February.
  • Handle: RePEc:eee:agiwat:v:53:y:2002:i:1-3:p:99-109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(01)00158-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ward, P. R. & Dunin, F. X. & Micin, S. F., 2002. "Water use and root growth by annual and perennial pastures and subsequent crops in a phase rotation," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 83-97, February.
    2. Bee, Geoffrey A. & Laslett, Graham, 2002. "Development of a rainfed lucerne-based farming system in the Mediterranean climatic region of southwestern Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 111-116, February.
    3. McFarlane, Don J. & Williamson, David R., 2002. "An overview of water logging and salinity in southwestern Australia as related to the `Ucarro' experimental catchment," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 5-29, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Turner, Neil C. & Ward, Philip R., 2002. "The role of agroforestry and perennial pasture in mitigating water logging and secondary salinity: summary," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 271-275, February.
    2. Bennett, Anne L., 2003. "Changing Farming Systems - Case Studies Assessing the Financial Implications," 14th Congress, Perth, Western Australia, August 10-15, 2003 24368, International Farm Management Association.
    3. O'Connell, Michael & Young, John & Kingwell, Ross, 2006. "The economic value of saltland pastures in a mixed farming system in Western Australia," Agricultural Systems, Elsevier, vol. 89(2-3), pages 371-389, September.
    4. Poole, M. L. & Turner, Neil C. & Young, J. M., 2002. "Sustainable cropping systems for high rainfall areas of southwestern Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 201-211, February.
    5. Bee, Geoffrey A. & Laslett, Graham, 2002. "Development of a rainfed lucerne-based farming system in the Mediterranean climatic region of southwestern Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 111-116, February.
    6. Doole, Graeme J. & Pannell, David J., 2009. "Evaluating combined land conservation benefits from perennial pasture: lucerne ( Medicago sativa L.) for management of dryland salinity and herbicide resistance in Western Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(2), pages 1-19.
    7. Bathgate, Andrew & Pannell, David J., 2002. "Economics of deep-rooted perennials in western Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 117-132, February.
    8. Pannell, David J. & Ewing, Michael A., 2006. "Managing secondary dryland salinity: Options and challenges," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 41-56, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pannell, David J. & Ewing, Michael A., 2006. "Managing secondary dryland salinity: Options and challenges," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 41-56, February.
    2. Turner, Neil C. & Ward, Philip R., 2002. "The role of agroforestry and perennial pasture in mitigating water logging and secondary salinity: summary," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 271-275, February.
    3. Hodgson, G. A. & Bartle, G. A. & Silberstein, R. P. & Hatton, T. J. & Ward, B. H., 2002. "Measuring and monitoring the effects of agroforestry and drainage in the `Ucarro' sub-catchment," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 39-56, February.
    4. Bathgate, Andrew & Pannell, David J., 2002. "Economics of deep-rooted perennials in western Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 117-132, February.
    5. Rundle, Peter J. & Rundle, Bronte F., 2002. "A case study of farm-based solutions to water logging and secondary salinity in southwestern Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 31-38, February.
    6. Bee, Geoffrey A. & Laslett, Graham, 2002. "Development of a rainfed lucerne-based farming system in the Mediterranean climatic region of southwestern Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 111-116, February.
    7. Poole, M. L. & Turner, Neil C. & Young, J. M., 2002. "Sustainable cropping systems for high rainfall areas of southwestern Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 201-211, February.
    8. Fulco Ludwig & Stephen Milroy & Senthold Asseng, 2009. "Impacts of recent climate change on wheat production systems in Western Australia," Climatic Change, Springer, vol. 92(3), pages 495-517, February.
    9. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    10. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    11. Chowdary, V.M. & Chandran, R. Vinu & Neeti, N. & Bothale, R.V. & Srivastava, Y.K. & Ingle, P. & Ramakrishnan, D. & Dutta, D. & Jeyaram, A. & Sharma, J.R. & Singh, Ravindra, 2008. "Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS," Agricultural Water Management, Elsevier, vol. 95(7), pages 754-766, July.
    12. Mohammed Al-Murad & Saif Uddin & Tariq Rashid & Habib Al-Qallaf & Abdullah Bushehri, 2017. "Waterlogging in Arid Agriculture Areas Due to Improper Groundwater Management—An Example from Kuwait," Sustainability, MDPI, vol. 9(11), pages 1-12, November.
    13. Dunin, F. X., 2002. "Integrating agroforestry and perennial pastures to mitigate water logging and secondary salinity," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 259-270, February.
    14. Asseng, S. & Dray, A. & Perez, P. & Su, X., 2010. "Rainfall–human–spatial interactions in a salinity-prone agricultural region of the Western Australian wheat-belt," Ecological Modelling, Elsevier, vol. 221(5), pages 812-824.
    15. Townsend, P.V. & Harper, R.J. & Brennan, P.D. & Dean, C. & Wu, S. & Smettem, K.R.J. & Cook, S.E., 2012. "Multiple environmental services as an opportunity for watershed restoration," Forest Policy and Economics, Elsevier, vol. 17(C), pages 45-58.
    16. Barrett-Lennard, E. G., 2002. "Restoration of saline land through revegetation," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 213-226, February.
    17. Giulia Sofia & Paolo Tarolli, 2017. "Hydrological Response to ~30 years of Agricultural Surface Water Management," Land, MDPI, vol. 6(1), pages 1-24, January.
    18. Wang, Linlin & Xie, Junhong & Luo, Zhuzhu & Niu, Yining & Coulter, Jeffrey A. & Zhang, Renzhi & Lingling, Li, 2021. "Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Ward, P. R. & Dunin, F. X. & Micin, S. F., 2002. "Water use and root growth by annual and perennial pastures and subsequent crops in a phase rotation," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 83-97, February.
    20. Nicol, Dion L. & Finlayson, John & Colmer, Timothy D. & Ryan, Megan H., 2013. "Opportunistic Mediterranean agriculture – Using ephemeral pasture legumes to utilize summer rainfall," Agricultural Systems, Elsevier, vol. 120(C), pages 76-84.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:53:y:2002:i:1-3:p:99-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.