IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v305y2024ics0378377424004670.html
   My bibliography  Save this article

Quantifying the rainfall variability effects on crop growth and production in the intensified annual forage - winter wheat rotation systems in a semiarid region of China

Author

Listed:
  • Lai, Xingfa
  • You, Yongliang
  • Yang, Xianlong
  • Wang, Zikui
  • Shen, Yuying

Abstract

Replacing summer fallow period (July to September, SF) with annual short-season forages in the traditional fallow-winter wheat (Triticum aestivum L.) system may maintain grain yield and improve productivity in the semi-arid environments. But the uneven and variability rainfall led to instable productivity of the annual forage–winter wheat cropping system. The aims of this study were to 1) quantifying rainfall variability effects on annual forage–winter wheat system crop growing process and productivity; 2) determine the optimal annual forage–winter wheat production system that will response better to future climate change. A four-year (2016–2020) field experiment was conducted to investigate the impact of replacing summer fallow period with annual forages including oat (FO, Avena sativa L.), soybean (SB, Glycine max L.), and vetch (FV, Vicia sativa L.) on plant height (H), leaf area index (LAI), and above-ground biomass (AByield) growth index dynamics under three different levels of rainfall manipulation i.e. 30 % of ambient rainfall exclusion (R-30 %), natural rainfall (CK), and 30 % of ambient rainfall increase (R+30 %). Additionally, we assessed the correlations between forage and winter wheat production with growing season precipitation across 12 rainfall scenarios. Average forage biomass values of oat, soybean, and vetch were 5.50, 4.29, and 2.82 t ha−1, respectively during summer fallow period. The average winter wheat grain yield values in SF, FO, SB, and FV were 3.78, 3.12, 4.02, and 3.18 t ha−1, respectively. Integrating oat into fallow period had negative effects on wheat growth and production, and the H, LAI, and AByield for FO were 63.7 %, 50.9 %, and 29.9 % lower than SF in dry year, but the wheat grain yield in SB were 18.2 % and 24.8 % greater than SF in normal and wet years. Across the four growing seasons, the forage and wheat yields were shown to be strongly related to precipitation, and increasing precipitation significantly enhanced the production. In 2016–2017 growing season, LAI of wheat in SF, FO, SB, and FV with R+30 % scenario was increased by 30.2 %, 21.7 %, 32.7 %, and 19.8 % and that with R-30 % scenario decreased by 23.2 %, 17.8 %, 24.7 %, 16.5 % compared CK, respectively. The traditional summer fallow practice had advantage for maintaining stability in wheat gain production, especially under dry years. In consideration of forage and wheat production to rainfall variability, integrating soybean into fallow season may be an efficient option to maintain wheat yield and produce high forage amount under future climate change on the Loess Plateau and similar semi-arid regions.

Suggested Citation

  • Lai, Xingfa & You, Yongliang & Yang, Xianlong & Wang, Zikui & Shen, Yuying, 2024. "Quantifying the rainfall variability effects on crop growth and production in the intensified annual forage - winter wheat rotation systems in a semiarid region of China," Agricultural Water Management, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004670
    DOI: 10.1016/j.agwat.2024.109131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lai, Xingfa & Yang, Xianlong & Wang, Zikui & Shen, Yuying & Ma, Longshuai, 2022. "Productivity and water use in forage-winter wheat cropping systems across variable precipitation gradients on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Nielsen, David C. & Vigil, Merle F., 2017. "Intensifying a semi-arid dryland crop rotation by replacing fallow with pea," Agricultural Water Management, Elsevier, vol. 186(C), pages 127-138.
    3. Wu, Lihong & Quan, Hao & Wu, Lina & Zhang, Xi & Feng, Hao & Ding, Dianyuan & Siddique, Kadambot H.M., 2023. "Responses of winter wheat yield and water productivity to sowing time and plastic mulching in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garba, Ismail I. & Bell, Lindsay W. & Chauhan, Bhagirath S. & Williams, Alwyn, 2024. "Optimizing ecosystem function multifunctionality with cover crops for improved agronomic and environmental outcomes in dryland cropping systems," Agricultural Systems, Elsevier, vol. 214(C).
    2. You, Yongliang & Song, Ping & Yang, Xianlong & Zheng, Yapeng & Dong, Li & Chen, Jing, 2022. "Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Kamran, Muhammad & Yan, Zhengang & Chang, Shenghua & Ning, Jiao & Lou, Shanning & Ahmad, Irshad & Ghani, Muhammad Usman & Arif, Muhammad & El Sabagh, Ayman & Hou, Fujiang, 2023. "Interactive effects of reduced irrigation and nitrogen fertilization on resource use efficiency, forage nutritive quality, yield, and economic benefits of spring wheat in the arid region of Northwest ," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Deng, Jianqiang & Zhang, Zhixin & Liang, Zhiting & Li, Zhou & Yang, Xianlong & Wang, Zikui & Coulter, Jeffrey A. & Shen, Yuying, 2020. "Replacing summer fallow with annual forage improves crude protein productivity and water use efficiency of the summer fallow-winter wheat cropping system," Agricultural Water Management, Elsevier, vol. 230(C).
    5. Lu, Yongli & Ma, Renshi & Gao, Wei & You, Yongliang & Jiang, Congze & Zhang, Zhixin & Kamran, Muhammad & Yang, Xianlong, 2024. "Optimizing the nitrogen application rate and planting density to improve dry matter yield, water productivity and N-use efficiency of forage maize in a rainfed region," Agricultural Water Management, Elsevier, vol. 305(C).
    6. Fang, Chao & Song, Xin & Ye, Jian-Sheng & Yuan, Zi-Qiang & Agathokleous, Evgenios & Feng, Zhaozhong & Li, Feng-Min, 2023. "Enhanced soil water recovery and crop yield following conversion of 9-year-old leguminous pastures into croplands," Agricultural Water Management, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.