Author
Listed:
- Bi, Yanpeng
- Zhou, Beibei
- Ren, Peiqi
- Chen, Xiaopeng
- Zhou, Dehua
- Yao, Shaoxiong
- Fan, Dongliang
- Chen, Xiaolong
Abstract
The scarcity of fresh water resources has severely limited agricultural production in arid areas. Although brackish water irrigation or fresh water deficit irrigation can alleviate the water resources crisis, both may cause water and salt stress to crop. Therefore, this study is based on the functional advantages of Bacillus subtilis in soil improvement and crop growth promotion to alleviate water and salt stress and build safe and efficient water-saving irrigation patterns. In this study, cotton (No. 50 Chuangmian) was selected as the research crop, and five application rates of Bacillus subtilis (0, 22.5, 45, 67.5 and 90 kg·ha−1) were combined with three irrigation patterns (brackish water, fresh water and fresh water deficit irrigations) to study the effects of Bacillus subtilis on soil moisture and salinity, soil microbial community, cotton physiology and growth under water and salt stress. The results showed that Bacillus subtilis could enhance soil water retention capacity, promote soil desalination, improve cotton growth indices (plant height, stem diameter, leaf area index, dry matter accumulation), and then increase yield and water use efficiency (WUE). Compared with the control treatment, the yield and WUE of Bacillus subtilis application treatments increased by 3.32–54.67 % and 1.68–41.07 %, respectively. In the cotton physiology characteristics, Bacillus subtilis increased proline content and the activity of superoxide dismutase, peroxidase and catalase while decreased malondialdehyde content in cotton leaves. Bacillus subtilis could enhance the relative abundance of bacteria with the functions of nitrogen fixation, stress resistance and biocontrol. A structural equation model proved that Bacillus subtilis could improve yield and WUE indirectly by directly improving soil microbial diversity, alleviating water and salt stress, and then improving cotton physiology and growth. According to a comprehensive evaluation of cotton physiology and growth, it was determined that the optimal improvement effect was achieved when the application rate of Bacillus subtilis was 45 kg ha−1; the synergistic effect of brackish water irrigation and Bacillus subtilis (45 kg·ha−1) was superior to that of fresh water deficit irrigation combining with Bacillus subtilis (45 kg·ha−1), which could be considered a priority strategy for alleviating the fresh water crisis in arid areas and promoting the efficient increase in cotton yield.
Suggested Citation
Bi, Yanpeng & Zhou, Beibei & Ren, Peiqi & Chen, Xiaopeng & Zhou, Dehua & Yao, Shaoxiong & Fan, Dongliang & Chen, Xiaolong, 2024.
"Effects of Bacillus subtilis on cotton physiology and growth under water and salt stress,"
Agricultural Water Management, Elsevier, vol. 303(C).
Handle:
RePEc:eee:agiwat:v:303:y:2024:i:c:s0378377424003731
DOI: 10.1016/j.agwat.2024.109038
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:303:y:2024:i:c:s0378377424003731. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.