IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v291y2024ics0378377423004791.html
   My bibliography  Save this article

The use of purified wastewater for irrigation: Possible strategies in the Capitanata area (Apulia, Italy)

Author

Listed:
  • Manganiello, Veronica
  • Zucaro, Raffaella
  • Dono, Gabriele

Abstract

The reuse of purified wastewater can supplement water availability for irrigation and limit withdrawals from groundwater which contribute to deteriorating its quality in many Italian coastal agricultural areas. The regulatory framework defined by EC Reg. 741/2020 specifies the legal and technical conditions, which from 2023 allow this use to be promoted in Italy. However, Italian agriculture is also differentiated in the ways in which farms obtain water for irrigation, and it is advisable to direct the treated wastewater towards the types that will then effectively reduce the use of groundwater. Our study seeks to identify these typologies by examining irrigation conditions in an important agricultural area of Southern Italy. Some districts of this territory are reached by collective irrigation networks of a Consortium that supply all the irrigation water; other areas are connected to those networks, but its supplies are lacking, and the farms also draw on underground aquifers; other areas are not reached by the collective network and groundwater is the only irrigation resource available. An econometric estimate of the irrigation demand in these areas defines whether the relationship between irrigation demand for groundwater and consortium is complementary or substitutive. This outlines the possible responses to the increase in consortium supplies with the introduction of treated wastewater, identifying the farm types to which those additional water resources can be allocated to reduce withdrawals from aquifers. A Seemingly Unrelated Regression Equations system of two irrigation water demand functions, from Consortium and from farm wells, is estimated with data from the National Information System for the Management of Water Resources in Agriculture (SIGRIAN) and the Farm Accountancy Data Network (FADN). The unitary costs of using each of these two sources are amongst the technical and economic regressors. The results indicate that in the farm type that uses both water sources, consortium and groundwater, there is a substitution relationship between these two sources. Also, the irrigation of these farms is the most responsive to current trends in the profitability of the various groups of crops, with the possibility of a further growth in the groundwater use. Supporting irrigation with treated wastewater on these farms would not induce rebound effects that increase the groundwater use: a greater irrigation supply of purified and conventional water at lower costs would instead reduce the use this water source.

Suggested Citation

  • Manganiello, Veronica & Zucaro, Raffaella & Dono, Gabriele, 2024. "The use of purified wastewater for irrigation: Possible strategies in the Capitanata area (Apulia, Italy)," Agricultural Water Management, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423004791
    DOI: 10.1016/j.agwat.2023.108614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004791
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedrero, Francisco & Kalavrouziotis, Ioannis & Alarcón, Juan José & Koukoulakis, Prodromos & Asano, Takashi, 2010. "Use of treated municipal wastewater in irrigated agriculture--Review of some practices in Spain and Greece," Agricultural Water Management, Elsevier, vol. 97(9), pages 1233-1241, September.
    2. Zucaro, Raffaella & Rago, C. & Vollaro, Michele, 2012. "Valutazione tecnico-economica delle potenzialità di riutilizzo irriguo dei reflui depurati: il caso della Valpadana," 2012 First Congress, June 4-5, 2012, Trento, Italy 124115, Italian Association of Agricultural and Applied Economics (AIEAA).
    3. Weinzettel, Jan & Pfister, Stephan, 2019. "International trade of global scarce water use in agriculture: Modeling on watershed level with monthly resolution," Ecological Economics, Elsevier, vol. 159(C), pages 301-311.
    4. María Fernanda Jaramillo & Inés Restrepo, 2017. "Wastewater Reuse in Agriculture: A Review about Its Limitations and Benefits," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jemal Fito & Stijn W. H. Hulle, 2021. "Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2949-2972, March.
    2. Ricart, Sandra & Rico, Antonio M., 2019. "Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor," Agricultural Water Management, Elsevier, vol. 217(C), pages 426-439.
    3. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Shannag, Hail K. & Al-Mefleh, Naji K. & Freihat, Nawaf M., 2021. "Reuse of wastewaters in irrigation of broad bean and their effect on plant-aphid interaction," Agricultural Water Management, Elsevier, vol. 257(C).
    5. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Kledja Canaj & Andi Mehmeti & Julio Berbel, 2021. "The Economics of Fruit and Vegetable Production Irrigated with Reclaimed Water Incorporating the Hidden Costs of Life Cycle Environmental Impacts," Resources, MDPI, vol. 10(9), pages 1-13, September.
    7. Ejovi Akpojevwe Abafe & Yonas T. Bahta & Henry Jordaan, 2022. "Exploring Biblioshiny for Historical Assessment of Global Research on Sustainable Use of Water in Agriculture," Sustainability, MDPI, vol. 14(17), pages 1-34, August.
    8. Dimitra Lazaridou & Anastasios Michailidis & Konstantinos Mattas, 2019. "Evaluating the Willingness to Pay for Using Recycled Water for Irrigation," Sustainability, MDPI, vol. 11(19), pages 1-8, September.
    9. Karel Mulder, 2019. "Future Options for Sewage and Drainage Systems Three Scenarios for Transitions and Continuity," Sustainability, MDPI, vol. 11(5), pages 1-15, March.
    10. Bruckner, Martin & Wood, Richard & Moran, Daniel & Kuschnig, Nikolas & Wieland, Hanspeter & Maus, Victor & Börner, Jan, 2019. "FABIO - The Construction of the Food and Agriculture Biomass Input-Output Model," Ecological Economic Papers 27, WU Vienna University of Economics and Business.
    11. Sina Shaddel & Hamidreza Bakhtiary-Davijany & Christian Kabbe & Farbod Dadgar & Stein W. Østerhus, 2019. "Sustainable Sewage Sludge Management: From Current Practices to Emerging Nutrient Recovery Technologies," Sustainability, MDPI, vol. 11(12), pages 1-12, June.
    12. Sana Khalid & Muhammad Shahid & Natasha & Irshad Bibi & Tania Sarwar & Ali Haidar Shah & Nabeel Khan Niazi, 2018. "A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries," IJERPH, MDPI, vol. 15(5), pages 1-36, May.
    13. Haoye Sun & Thorsten Teichert, 2024. "Scarcity in today´s consumer markets: scoping the research landscape by author keywords," Management Review Quarterly, Springer, vol. 74(1), pages 93-120, February.
    14. Feder, Frédéric, 2021. "Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality," Agricultural Water Management, Elsevier, vol. 247(C).
    15. Grinshpan, Maayan & Turkeltaub, Tuvia & Furman, Alex & Raveh, Eran & Weisbrod, Noam, 2022. "On the use of orchards to support soil aquifer treatment systems," Agricultural Water Management, Elsevier, vol. 260(C).
    16. Marzena Smol, 2023. "Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery," Energies, MDPI, vol. 16(9), pages 1-18, May.
    17. Cirelli, G.L. & Consoli, S. & Licciardello, F. & Aiello, R. & Giuffrida, F. & Leonardi, C., 2012. "Treated municipal wastewater reuse in vegetable production," Agricultural Water Management, Elsevier, vol. 104(C), pages 163-170.
    18. Kourgialas, Nektarios N. & Dokou, Zoi, 2021. "Water management and salinity adaptation approaches of Avocado trees: A review for hot-summer Mediterranean climate," Agricultural Water Management, Elsevier, vol. 252(C).
    19. Oliver Maaß & Philipp Grundmann, 2018. "Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany)," Sustainability, MDPI, vol. 10(4), pages 1-29, April.
    20. Songtao Liu & Furong Yu & Jianuo Zhang, 2022. "Heavy-Metal Speciation Distribution and Adsorption Characteristics of Cr (VI) in the Soil within Sewage Irrigation Areas," IJERPH, MDPI, vol. 19(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423004791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.