IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v274y2022ics0378377422005157.html
   My bibliography  Save this article

Growing season water and salt migration between abandoned lands and adjacent croplands in arid and semi-arid irrigation areas in shallow water table environments

Author

Listed:
  • Liu, Geng
  • Wang, Chaozi
  • Wang, Xianghao
  • Huo, Zailin
  • Liu, Jiarong

Abstract

In arid and semi-arid irrigation areas with shallow water tables and fragmented arrangement of croplands and abandoned lands, dry drainage could be an optional management practice mitigating soil salinization. A dry drainage system lets non-irrigated abandoned lands serve as evaporative salt sinks receiving water and salt fluxes from adjacent irrigated croplands. Therefore, this research takes a typical dry drainage unit in the Hetao Irrigation District—one abandoned land and its adjacent croplands—as an example to directly reveal the field scale water and salt migration between abandoned lands and adjacent croplands. It was found that during the growing season, the water input, i.e. field irrigation and precipitation, raised the water table of the croplands and drove water and salt migration from croplands to the abandoned lands. However, the evapotranspiration in the croplands was also larger than that in the abandoned lands. Thus, during the intervals of irrigation (the “phreatic evaporation periods”), in some circumstances, evapotranspiration could drive water and salt flux from the abandoned lands to the croplands, which would influence the groundwater salinity of the croplands. Therefore, it is recommended to plant halophytes on the abandoned lands to enhance its evapotranspiration and hinder the water and salt flux from the abandoned lands to the croplands during intervals of irrigation. This management practice could help form more effective dry drainage systems between abandoned lands and adjacent croplands, and help better control the root zone salinity of the croplands.

Suggested Citation

  • Liu, Geng & Wang, Chaozi & Wang, Xianghao & Huo, Zailin & Liu, Jiarong, 2022. "Growing season water and salt migration between abandoned lands and adjacent croplands in arid and semi-arid irrigation areas in shallow water table environments," Agricultural Water Management, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422005157
    DOI: 10.1016/j.agwat.2022.107968
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422005157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greenwood, E. A. N. & Milligan, A. & Biddiscombe, E. F. & Rogers, A. L. & Beresford, J. D. & Watson, G. D. & Wright, K. D., 1992. "Hydrologic and salinity changes associated with tree plantations in a saline agricultural catchment in southwestern Australia," Agricultural Water Management, Elsevier, vol. 22(3), pages 307-323, November.
    2. Xu, Xu & Huang, Guanhua & Qu, Zhongyi & Pereira, Luis S., 2010. "Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin," Agricultural Water Management, Elsevier, vol. 98(2), pages 301-313, December.
    3. Konukcu, F. & Gowing, J.W. & Rose, D.A., 2006. "Dry drainage: A sustainable solution to waterlogging and salinity problems in irrigation areas?," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 1-12, May.
    4. Greenwood, E. A. N. & Biddiscombe, E. F. & Rogers, A. L. & Beresford, J. D. & Watson, G. D., 1994. "The influence on groundwater levels and salinity of a multi-specied tree plantation in the 500 mm rainfall region of south-western Australia," Agricultural Water Management, Elsevier, vol. 25(2), pages 185-200, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chowdary, V.M. & Chandran, R. Vinu & Neeti, N. & Bothale, R.V. & Srivastava, Y.K. & Ingle, P. & Ramakrishnan, D. & Dutta, D. & Jeyaram, A. & Sharma, J.R. & Singh, Ravindra, 2008. "Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS," Agricultural Water Management, Elsevier, vol. 95(7), pages 754-766, July.
    2. Konukcu, F. & Gowing, J.W. & Rose, D.A., 2006. "Dry drainage: A sustainable solution to waterlogging and salinity problems in irrigation areas?," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 1-12, May.
    3. Mao, Wei & Zhu, Yan & Wu, Jingwei & Ye, Ming & Yang, Jinzhong, 2022. "Evaluation of effects of limited irrigation on regional-scale water movement and salt accumulation in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2019. "Hydrological complexities in irrigated agro-ecosystems with fragmented land cover types and shallow groundwater: Insights from a distributed hydrological modeling method," Agricultural Water Management, Elsevier, vol. 213(C), pages 868-881.
    5. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    6. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    8. Feng Tian & Haibin Shi & Qingfeng Miao & Ruiping Li & Jie Duan & Xu Dou & Weiying Feng, 2023. "Soil Water and Salt Transport in Severe Saline–Alkali Soil after Ditching under Subsurface Pipe Drainage Conditions," Agriculture, MDPI, vol. 13(12), pages 1-20, November.
    9. Morris, J. D. & Collopy, J. J., 1999. "Water use and salt accumulation by Eucalyptus camaldulensis and Casuarina cunninghamiana on a site with shallow saline groundwater," Agricultural Water Management, Elsevier, vol. 39(2-3), pages 205-227, February.
    10. Huang, Ya & Zhang, Zhe & Li, Zhenhua & Dai, Danqiong & Li, Yanping, 2022. "Evaluation of water use efficiency and optimal irrigation quantity of spring maize in Hetao Irrigation District using the Noah-MP Land Surface Model," Agricultural Water Management, Elsevier, vol. 264(C).
    11. Du, Ruiqi & Chen, Junying & Zhang, Zhitao & Chen, Yinwen & He, Yujie & Yin, Haoyuan, 2022. "Simultaneous estimation of surface soil moisture and salinity during irrigation with the moisture-salinity-dependent spectral response model," Agricultural Water Management, Elsevier, vol. 265(C).
    12. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    13. Stirzaker, R. J. & Cook, F. J. & Knight, J. H., 1999. "Where to plant trees on cropping land for control of dryland salinity: some approximate solutions," Agricultural Water Management, Elsevier, vol. 39(2-3), pages 115-133, February.
    14. Romeu Gerardo & Isabel P. de Lima, 2022. "Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal," Agriculture, MDPI, vol. 12(9), pages 1-20, September.
    15. Thomas Spencer & Tihomir Ancev & Jeff Connor, 2009. "Improving Cost Effectiveness of Irrigation Zoning for Salinity Mitigation by Introducing Offsets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2085-2100, August.
    16. Vandersypen, K. & Keita, A.C.T. & Coulibaly, B. & Raes, D. & Jamin, J.-Y., 2007. "Drainage problems in the rice schemes of the Office du Niger (Mali) in relation to water management," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 153-160, April.
    17. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    18. Marlet, Serge & Bouksila, Fethi & Bahri, Akissa, 2009. "Water and salt balance at irrigation scheme scale: A comprehensive approach for salinity assessment in a Saharan oasis," Agricultural Water Management, Elsevier, vol. 96(9), pages 1311-1322, September.
    19. Ajay Singh & Sudhindra Panda, 2013. "Optimization and Simulation Modelling for Managing the Problems of Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3421-3431, July.
    20. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422005157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.