IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v263y2022ics0378377422000270.html
   My bibliography  Save this article

Irrigation optimization with a deep reinforcement learning model: Case study on a site in Portugal

Author

Listed:
  • Alibabaei, Khadijeh
  • Gaspar, Pedro D.
  • Assunção, Eduardo
  • Alirezazadeh, Saeid
  • Lima, Tânia M.

Abstract

In the field of agriculture, the water used for irrigation should be given special treatment, as it is responsible for a large proportion of total water consumption. Irrigation scheduling is critical to food production because it guarantees producers a consistent harvest and minimizes the risk of losses due to water shortages. Therefore, the creation of an automatic irrigation method using new technologies is essential. New methods such as deep learning algorithms have attracted a lot of attention in agriculture and are already being used successfully. In this work, a Deep Q-Network was trained for irrigation scheduling. The agent was trained to schedule irrigation for a tomato field in Portugal. Two Long Short Term Memory models were used as the agent environment. One predicts the total water in the soil profile on the next day. The other one was employed to estimate the yield based on the environmental condition during a season and then measure the net return. The agent uses this information to decide the following irrigation amount. An Artificial Neural Network, a Long Short Term Memory, and a Convolutional Neural Network were used to estimating the Q-table during training. Unlike the Long-Short Terms Memory model, the Artificial Neural Network and the Convolutional Neural Network could not estimate the Q-table, and the agent’s reward decreased during training. The comparison of the performance of the model was done with fixed base irrigation and threshold based irrigation. The trained model increased productivity by 11% and decreased water consumption by 20–30% compared to the fixed method.

Suggested Citation

  • Alibabaei, Khadijeh & Gaspar, Pedro D. & Assunção, Eduardo & Alirezazadeh, Saeid & Lima, Tânia M., 2022. "Irrigation optimization with a deep reinforcement learning model: Case study on a site in Portugal," Agricultural Water Management, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377422000270
    DOI: 10.1016/j.agwat.2022.107480
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422000270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khadijeh Alibabaei & Pedro D. Gaspar & Tânia M. Lima, 2021. "Crop Yield Estimation Using Deep Learning Based on Climate Big Data and Irrigation Scheduling," Energies, MDPI, vol. 14(11), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guilherme Jesus & Martim L. Aguiar & Pedro D. Gaspar, 2022. "Computational Tool to Support the Decision in the Selection of Alternative and/or Sustainable Refrigerants," Energies, MDPI, vol. 15(22), pages 1-20, November.
    2. Eduardo Assunção & Pedro D. Gaspar & Khadijeh Alibabaei & Maria P. Simões & Hugo Proença & Vasco N. G. J. Soares & João M. L. P. Caldeira, 2022. "Real-Time Image Detection for Edge Devices: A Peach Fruit Detection Application," Future Internet, MDPI, vol. 14(11), pages 1-12, November.
    3. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    4. Danyang Gao & Albert S. Chen & Fayyaz Ali Memon, 2024. "A Systematic Review of Methods for Investigating Climate Change Impacts on Water-Energy-Food Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 1-43, January.
    5. Bounajra, Afaf & Guemmat, Kamal El & Mansouri, Khalifa & Akef, Fatiha, 2024. "Towards efficient irrigation management at field scale using new technologies: A systematic literature review," Agricultural Water Management, Elsevier, vol. 295(C).
    6. Umutoni, Lisa & Samadi, Vidya, 2024. "Application of machine learning approaches in supporting irrigation decision making: A review," Agricultural Water Management, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Moiz Uddin & Hussain, Iqbal, 2022. "Prediction of Wheat Production Using Machine Learning Algorithms in northern areas of Pakistan," Telecommunications Policy, Elsevier, vol. 46(6).
    2. Schmidt, Lorenz & Odening, Martin & Schlanstein, Johann & Ritter, Matthias, 2022. "Exploring the weather-yield nexus with artificial neural networks," Agricultural Systems, Elsevier, vol. 196(C).
    3. Guilherme Jesus & Martim L. Aguiar & Pedro D. Gaspar, 2022. "Computational Tool to Support the Decision in the Selection of Alternative and/or Sustainable Refrigerants," Energies, MDPI, vol. 15(22), pages 1-20, November.
    4. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdoulghafor & Samir Brahim Belhaouari & Normahira Mamat & Shamsul Faisal Mohd Hussein, 2022. "Advanced Technology in Agriculture Industry by Implementing Image Annotation Technique and Deep Learning Approach: A Review," Agriculture, MDPI, vol. 12(7), pages 1-35, July.
    5. Isakwisa Gaddy Tende & Kentaro Aburada & Hisaaki Yamaba & Tetsuro Katayama & Naonobu Okazaki, 2023. "Development and Evaluation of a Deep Learning Based System to Predict District-Level Maize Yields in Tanzania," Agriculture, MDPI, vol. 13(3), pages 1-19, March.
    6. Eduardo Assunção & Pedro D. Gaspar & Khadijeh Alibabaei & Maria P. Simões & Hugo Proença & Vasco N. G. J. Soares & João M. L. P. Caldeira, 2022. "Real-Time Image Detection for Edge Devices: A Peach Fruit Detection Application," Future Internet, MDPI, vol. 14(11), pages 1-12, November.
    7. Irtiqa Malik & Muneeb Ahmed & Yonis Gulzar & Sajad Hassan Baba & Mohammad Shuaib Mir & Arjumand Bano Soomro & Abid Sultan & Osman Elwasila, 2023. "Estimation of the Extent of the Vulnerability of Agriculture to Climate Change Using Analytical and Deep-Learning Methods: A Case Study in Jammu, Kashmir, and Ladakh," Sustainability, MDPI, vol. 15(14), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377422000270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.