IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v261y2022ics0378377421006259.html
   My bibliography  Save this article

Comparison of cover crop monocultures and mixtures for suppressing nitrogen leaching losses

Author

Listed:
  • Gaimaro, Joshua
  • Timlin, Dennis
  • Tully, Katherine

Abstract

The 2025 goal of the Chesapeake Bay Program is to reduce agriculture’s nitrogen (N) loading by 20% from 2014 values. Cover cropping is an important best management practice for recycling and conserving N in cropping systems that might otherwise be lost to groundwater via leaching and runoff. The reduction of N leaching by winter cover crops depends largely on precipitation, timing of planting, and the selection of the appropriate crop species. We compared nitrate-nitrogen (NO3-–N) leaching losses among forage radish (Raphanus sativus L.), cereal rye (Secale cereal L.), a forage radish+cereal rye mixture, and no-cover control. Replicated field trials were conducted at the University of Maryland Central Maryland Research and Education Center over 2016–2018. We collected porewater from 60 cm below the ground surface using porous cup lysimeters following rainfall events and used NO3-–N concentrations paired with the HYDRUS 1-D soil moisture model to compare N leaching losses (in kg N ha−1) among cover crop treatments. We show that mean soil porewater NO3-–N concentrations were higher (by 5x) in the no-cover control compared to rye and radish+rye treatments (P < 0.0001). Overall, N leaching losses (kg N ha−1) were highest in the no-cover control plots (P < 0.0001), but the majority of N leaching losses in rye plots occurred during the fall while the majority of radish N leaching losses occurred during the winter and spring (after they winter-killed). The rye and radish+rye mixtures reduced N leaching losses by 80% in both years. Understanding how different cover crop species affect N leaching losses, can help us design cropping systems to minimize N losses to the Chesapeake Bay especially as climate change alters rainfall patterns across the region.

Suggested Citation

  • Gaimaro, Joshua & Timlin, Dennis & Tully, Katherine, 2022. "Comparison of cover crop monocultures and mixtures for suppressing nitrogen leaching losses," Agricultural Water Management, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006259
    DOI: 10.1016/j.agwat.2021.107348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421006259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ajdary, Khalil & Singh, D.K. & Singh, A.K. & Khanna, Manoj, 2007. "Modelling of nitrogen leaching from experimental onion field under drip fertigation," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 15-28, April.
    2. van der Laan, M. & Annandale, J.G. & Bristow, K.L. & Stirzaker, R.J. & Preez, C.C. du & Thorburn, P.J., 2014. "Modelling nitrogen leaching: Are we getting the right answer for the right reason?," Agricultural Water Management, Elsevier, vol. 133(C), pages 74-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taotao Chen & Erping Cui & Yanbo Zhang & Ge Gao & Hao You & Yurun Tian & Chao Hu & Yuan Liu & Tao Fan & Xiangyang Fan, 2024. "Microbial Network Complexity Helps to Reduce the Deep Migration of Chemical Fertilizer Nitrogen Under the Combined Application of Varying Irrigation Amounts and Multiple Nitrogen Sources," Agriculture, MDPI, vol. 14(12), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    2. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    3. Liu, Chunye & Wang, Rui & Wang, Wene & Hu, Xiaotao & Cheng, Yong & Liu, Fulai, 2021. "Effect of fertilizer solution concentrations on filter clogging in drip fertigation systems," Agricultural Water Management, Elsevier, vol. 250(C).
    4. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2018. "Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil," Agricultural Water Management, Elsevier, vol. 199(C), pages 120-137.
    6. N, Kishor & Khanna, Manoj & Rajanna, G.A. & Singh, Man & Singh, Anupama & Singh, Shrawan & Banerjee, Tirthankar & Patanjali, Neeraj & Rajput, Jitendra & Kiruthiga, B., 2024. "Soil water distribution and water productivity in red cabbage crop using superabsorbent polymeric hydrogels under different drip irrigation regimes," Agricultural Water Management, Elsevier, vol. 295(C).
    7. Fabio Vale Scarpare & Luciana do Carmo Zotelli & Robson Barizon & Sergio Gustavo Quassi de Castro & Andre Herman Freire Bezerra, 2023. "Leaching Runoff Fraction for Nitrate and Herbicides on Sugarcane Fields: Implications for Grey Water Footprint," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    8. Honghong Ma & Tao Yang & Xinxiang Niu & Zhenan Hou & Xingwang Ma, 2021. "Sound Water and Nitrogen Management Decreases Nitrogen Losses from a Drip-Fertigated Cotton Field in Northwestern China," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    9. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    10. Lutz, Femke & Stoorvogel, Jetse J. & Müller, Christoph, 2019. "Options to model the effects of tillage on N2O emissions at the global scale," Ecological Modelling, Elsevier, vol. 392(C), pages 212-225.
    11. Ravikumar, V. & Vijayakumar, G. & Simunek, J. & Chellamuthu, S. & Santhi, R. & Appavu, K., 2011. "Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1431-1440, July.
    12. He, Qinsi & Li, Sien & Kang, Shaozhong & Yang, Hanbo & Qin, Shujing, 2018. "Simulation of water balance in a maize field under film-mulching drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 252-260.
    13. Karandish, Fatemeh & Šimůnek, Jiří, 2019. "A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint," Agricultural Water Management, Elsevier, vol. 213(C), pages 809-820.
    14. Alexander S. Skorobogatov, 2014. "The Effect Of Closing Hour Restrictions On Alcohol Use And Abuse In Russia," HSE Working papers WP BRP 63/EC/2014, National Research University Higher School of Economics.
    15. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    16. Ojeda, Jonathan J. & Volenec, Jeffrey J. & Brouder, Sylvie M. & Caviglia, Octavio P. & Agnusdei, Mónica G., 2018. "Modelling stover and grain yields, and subsurface artificial drainage from long-term corn rotations using APSIM," Agricultural Water Management, Elsevier, vol. 195(C), pages 154-171.
    17. Głąb, Tomasz & Szewczyk, Wojciech & Gondek, Krzysztof & Mierzwa-Hersztek, Monika & Palmowska, Joanna & Nęcka, Krzysztof, 2020. "Optimization of turfgrass fertigation rate and frequency," Agricultural Water Management, Elsevier, vol. 234(C).
    18. Elmetwalli, Adel H. & Tyler, Andrew N., 2020. "Estimation of maize properties and differentiating moisture and nitrogen deficiency stress via ground – Based remotely sensed data," Agricultural Water Management, Elsevier, vol. 242(C).
    19. Zhu, Yan & Yang, Jinzhong & Ye, Ming & Sun, Huaiwei & Shi, Liangsheng, 2017. "Development and application of a fully integrated model for unsaturated-saturated nitrogen reactive transport," Agricultural Water Management, Elsevier, vol. 180(PA), pages 35-49.
    20. Tan, Xuezhi & Shao, Dongguo & Gu, Wenquan & Liu, Huanhuan, 2015. "Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 150(C), pages 67-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.