IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v259y2022ics0378377421005266.html
   My bibliography  Save this article

Estimation of crop evapotranspiration from MODIS data by combining random forest and trapezoidal models

Author

Listed:
  • Hao, Pengyu
  • Di, Liping
  • Guo, Liying

Abstract

Evapotranspiration (ET) is an important parameter for crop growth monitoring and land surface modeling. This paper proposed a new workflow, namely ESVEP-RF, to calculate ET during the crop growing season using MODIS data by combining the advantages of the trapezoidal model and Random Forest (RF) algorithm. In ESVEP-RF, the endmember-based soil and vegetation energy partitioning (ESVEP) model was first used to calculate a series of parameters from MODIS and meteorological inputs, and then all parameters derived from remote sensing data, meteorological data and ESVEP models were used as inputs to the RF algorithm for latent heat flux (LE) calculation. In-situ data of 12 years (2003–2012, 2018 and 2019) from five flux towers located in Nebraska (NE) and Michigan (MI) were used to test the performance of ESVEP-RF, and results showed that ESVEP-RF had great potential to accurately calculate ET when the number of training samples was sufficient and representative. In 2010 and 2011, R2 of LE were around 0.8 and RMSE were around 70 W/m2, which outperformed original ESVEP model results. This indicated that the RF algorithm could better describe the non-linear correlation between in LST/FVC space endmembers and LE. Among all parameters, LAI, PLEv and R-vw had high contribution with percentage importance of 18.49%, 15.71% and 13.57%, respectively. Furthermore, all samples between 2003 and 2012 collected from the three NE sites were used to train RF models and then calculate LE for both NE and MI sites in 2018 and 2019. In NE sites, RMSE was around 65 W/m2 and R2 was around 0.8. In MI sites, it was noted that no samples from these sites were included in the training data set, and RMSE was around 70 W/m2 and R2 was higher than 0.7. These results showed the potential of ESVEP-RF for providing up-to-date ET information.

Suggested Citation

  • Hao, Pengyu & Di, Liping & Guo, Liying, 2022. "Estimation of crop evapotranspiration from MODIS data by combining random forest and trapezoidal models," Agricultural Water Management, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:agiwat:v:259:y:2022:i:c:s0378377421005266
    DOI: 10.1016/j.agwat.2021.107249
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421005266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Knipper, K.R. & Kustas, W.P. & Anderson, M.C. & Nieto, H. & Alfieri, J.G. & Prueger, J.H. & Hain, C.R. & Gao, F. & McKee, L.G. & Alsina, M. Mar & Sanchez, L., 2020. "Using high-spatiotemporal thermal satellite ET retrievals to monitor water use over California vineyards of different climate, vine variety and trellis design," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Xue, Jingyuan & Bali, Khaled M. & Light, Sarah & Hessels, Tim & Kisekka, Isaya, 2020. "Evaluation of remote sensing-based evapotranspiration models against surface renewal in almonds, tomatoes and maize," Agricultural Water Management, Elsevier, vol. 238(C).
    4. Filgueiras, Roberto & Almeida, Thomé Simpliciano & Mantovani, Everardo Chartuni & Dias, Santos Henrique Brant & Fernandes-Filho, Elpídio Inácio & da Cunha, Fernando França & Venancio, Luan Peroni, 2020. "Soil water content and actual evapotranspiration predictions using regression algorithms and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Md Shahinoor Rahman & Liping Di, 2020. "A Systematic Review on Case Studies of Remote-Sensing-Based Flood Crop Loss Assessment," Agriculture, MDPI, vol. 10(4), pages 1-30, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Xinyu & Zhao, Jinfeng & Sun, Shikun & Jia, Chengru & Zhang, Fuyao & Ma, Yizhe & Wang, Kaixuan & Wang, Yubao, 2023. "Evaluation of the temporal reconstruction methods for MODIS-based continuous daily actual evapotranspiration estimation," Agricultural Water Management, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Williams, Larry E. & Levin, Alexander D. & Fidelibus, Matthew W., 2022. "Crop coefficients (Kc) developed from canopy shaded area in California vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Yan, Haofang & Li, Mi & Zhang, Chuan & Zhang, Jianyun & Wang, Guoqing & Yu, Jianjun & Ma, Jiamin & Zhao, Shuang, 2022. "Comparison of evapotranspiration upscaling methods from instantaneous to daytime scale for tea and wheat in southeast China," Agricultural Water Management, Elsevier, vol. 264(C).
    3. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    4. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
    6. Pei Wang & Jingjing Ma & Juanjuan Ma & Haitao Sun & Qi Chen, 2021. "A Novel Approach for the Simulation of Reference Evapotranspiration and Its Partitioning," Agriculture, MDPI, vol. 11(5), pages 1-12, April.
    7. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    8. Xue, Jingyuan & Fulton, Allan & Kisekka, Isaya, 2021. "Evaluating the role of remote sensing-based energy balance models in improving site-specific irrigation management for young walnut orchards," Agricultural Water Management, Elsevier, vol. 256(C).
    9. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    11. Bretreger, David & Yeo, In-Young & Hancock, Greg, 2022. "Quantifying irrigation water use with remote sensing: Soil water deficit modelling with uncertain soil parameters," Agricultural Water Management, Elsevier, vol. 260(C).
    12. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
    13. Mashabatu, Munashe & Ntshidi, Zanele & Dzikiti, Sebinasi & Jovanovic, Nebojsa & Dube, Timothy & Taylor, Nicky J., 2023. "Deriving crop coefficients for evergreen and deciduous fruit orchards in South Africa using the fraction of vegetation cover and tree height data," Agricultural Water Management, Elsevier, vol. 286(C).
    14. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    15. Takanori Kuronuma & Hitoshi Watanabe, 2021. "Identification of the Causative Genes of Calcium Deficiency Disorders in Horticulture Crops: A Systematic Review," Agriculture, MDPI, vol. 11(10), pages 1-18, September.
    16. Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
    17. Dexi Zhan & Yongqi Mu & Wenxu Duan & Mingzhu Ye & Yingqiang Song & Zhenqi Song & Kaizhong Yao & Dengkuo Sun & Ziqi Ding, 2023. "Spatial Prediction and Mapping of Soil Water Content by TPE-GBDT Model in Chinese Coastal Delta Farmland with Sentinel-2 Remote Sensing Data," Agriculture, MDPI, vol. 13(5), pages 1-19, May.
    18. Ferreira, Thomás R. & Maguire, Mitchell S. & da Silva, Bernardo B. & Neale, Christopher M.U. & Serrão, Edivaldo A.O. & Ferreira, Jéssica D. & de Moura, Magna S.B. & dos Santos, Carlos A.C. & Silva, Ma, 2023. "Assessment of water demands for irrigation using energy balance and satellite data fusion models in cloud computing: A study in the Brazilian semiarid region," Agricultural Water Management, Elsevier, vol. 281(C).
    19. Xinqin Gu & Li Yao & Lifeng Wu, 2023. "Prediction of Water Carbon Fluxes and Emission Causes in Rice Paddies Using Two Tree-Based Ensemble Algorithms," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    20. Noy, Ilan & Blanc, Elodie & Pundit, Madhavi & Uher, Tomas, 2023. "Nowcasting from Space: Impact of Tropical Cyclones on Fiji’s Agriculture," ADB Economics Working Paper Series 676, Asian Development Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:259:y:2022:i:c:s0378377421005266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.