IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v258y2021ics0378377421004996.html
   My bibliography  Save this article

Investigation of satellite-related precipitation products for modeling of rainfed wheat production systems

Author

Listed:
  • Araghi, Alireza
  • Jaghargh, Majid Rajabi
  • Maghrebi, Mohsen
  • Martinez, Christopher J.
  • Fraisse, Clyde W.
  • Olesen, Jørgen E.
  • Hoogenboom, Gerrit

Abstract

Precipitation is a very important weather variable for growth and yield of rainfed crops. In many agricultural regions of the world, high-quality precipitation records are not available, and thus, gridded precipitation products (GPPs) have to be applied as an alternative. The main objective of this study was to identify the most accurate GPP for simulating crop yield over a major rainfed wheat production zone in Iran. For this purpose, fifteen global GPPs were evaluated versus the observed precipitation records for the simulation of rainfed wheat growth and development and yield estimation using the Cropping System Model (CSM) CERES-Wheat model embedded in the Decision Support System for Agrotechnology Transfer (DSSAT). The findings showed that multi-source GPPs had generally higher skill for the yield estimation. Considering all statistical and simulation results obtained from three sites during 2000–2010, MSWEP (Multi-Source Weighted-Ensemble Precipitation) was found as the best alternative GPP to the observed precipitation data for rainfed wheat grain yield simulation with normalized root mean square error (NRMSE) of 4.6 and Nash–Sutcliffe efficiency (NSE) of 0.79, while CMORPH (the Climate Prediction Center morphing method) was the weakest with NRMSE of 13.3 and NSE as − 0.81. The results point to differences among GPP, but there is a need to evaluate in other regions if multi-purpose GPPs are in general more reliable than GPPs based on specific sources.

Suggested Citation

  • Araghi, Alireza & Jaghargh, Majid Rajabi & Maghrebi, Mohsen & Martinez, Christopher J. & Fraisse, Clyde W. & Olesen, Jørgen E. & Hoogenboom, Gerrit, 2021. "Investigation of satellite-related precipitation products for modeling of rainfed wheat production systems," Agricultural Water Management, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004996
    DOI: 10.1016/j.agwat.2021.107222
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421004996
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107222?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parkes, Ben & Higginbottom, Thomas P. & Hufken, Koen & Ceballos, Francisco & Kramer, Berber & Foster, Timothy, 2019. "Weather dataset choice introduces uncertainty to estimates of crop yield responses to climate variability and change:," IFPRI discussion papers 1870, International Food Policy Research Institute (IFPRI).
    2. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2017. "Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change," Agricultural Water Management, Elsevier, vol. 186(C), pages 108-119.
    3. Bannayan, M. & Eyshi Rezaei, E. & Hoogenboom, G., 2013. "Determining optimum planting dates for rainfed wheat using the precipitation uncertainty model and adjusted crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 126(C), pages 56-63.
    4. Toreti, A. & Maiorano, A. & De Sanctis, G. & Webber, H. & Ruane, A.C. & Fumagalli, D. & Ceglar, A. & Niemeyer, S. & Zampieri, M., 2019. "Using reanalysis in crop monitoring and forecasting systems," Agricultural Systems, Elsevier, vol. 168(C), pages 144-153.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    2. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    3. Jiang, Tengcong & Wang, Bin & Duan, Xiaoning & Liu, De Li & He, Jianqiang & He, Liang & Jin, Ning & Feng, Hao & Yu, Qiang, 2023. "Prioritizing agronomic practices and uncertainty assessment under climate change for winter wheat in the loess plateau, China," Agricultural Systems, Elsevier, vol. 212(C).
    4. Tassadit Kourat & Dalila Smadhi & Brahim Mouhouche & Nerdjes Gourari & M. G. Mostofa Amin & Christopher Robin Bryant, 2021. "Assessment of future climate change impact on rainfed wheat yield in the semi-arid Eastern High Plain of Algeria using a crop model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2175-2203, July.
    5. Parisa Paymard & Mohammad Bannayan & Reza Sadrabadi Haghighi, 2018. "Analysis of the climate change effect on wheat production systems and investigate the potential of management strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1237-1255, April.
    6. Hamzeh Ahmadi & Gholamabbas Fallah Ghalhari & Mohammad Baaghideh, 2019. "Impacts of climate change on apple tree cultivation areas in Iran," Climatic Change, Springer, vol. 153(1), pages 91-103, March.
    7. Jha, P.K. & Araya, A. & Stewart, Z.P. & Faye, A. & Traore, H. & Middendorf, B.J. & Prasad, P.V.V., 2021. "Projecting potential impact of COVID-19 on major cereal crops in Senegal and Burkina Faso using crop simulation models," Agricultural Systems, Elsevier, vol. 190(C).
    8. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    9. Enrico Biffis & Erik Chavez & Alexis Louaas & Pierre Picard, 2022. "Parametric insurance and technology adoption in developing countries," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 47(1), pages 7-44, March.
    10. Manners, Rhys & Vandamme, Elke & Adewopo, Julius & Thornton, Philip & Friedmann, Michael & Carpentier, Sebastien & Ezui, Kodjovi Senam & Thiele, Graham, 2021. "Suitability of root, tuber, and banana crops in Central Africa can be favoured under future climates," Agricultural Systems, Elsevier, vol. 193(C).
    11. Randell, Heather & Gray, Clark & Shayo, Elizabeth H., 2022. "Climatic conditions and household food security: Evidence from Tanzania," Food Policy, Elsevier, vol. 112(C).
    12. Viktória Benďáková & Henrietta Nagy & Natália Turčeková & Izabela Adamičková & Peter Bielik, 2024. "Assessing the Climate Change Impacts on Maize Production in the Slovak Republic and Their Relevance to Sustainability: A Case Study," Sustainability, MDPI, vol. 16(13), pages 1-21, June.
    13. A. Koocheki & M. Nassiri Mahallati & M. Bannayan & F. Yaghoubi, 2022. "Simulating resilience of rainfed wheat–based cropping systems of Iran under future climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(4), pages 1-30, April.
    14. Kothari, Kritika & Ale, Srinivasulu & Attia, Ahmed & Rajan, Nithya & Xue, Qingwu & Munster, Clyde L., 2019. "Potential climate change adaptation strategies for winter wheat production in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    15. Nouri, Milad & Homaee, Mehdi, 2022. "Reference crop evapotranspiration for data-sparse regions using reanalysis products," Agricultural Water Management, Elsevier, vol. 262(C).
    16. Huang, Mingxia & Wang, Jing & Wang, Bin & Liu, De Li & Feng, Puyu & Yu, Qiang & Pan, Xuebiao & Li, Siyi & Jiang, Tengcong, 2022. "Dominant sources of uncertainty in simulating maize adaptation under future climate scenarios in China," Agricultural Systems, Elsevier, vol. 199(C).
    17. Getachew, Fikadu & Bayabil, Haimanote K. & Hoogenboom, Gerrit & Teshome, Fitsum T. & Zewdu, Eshetu, 2021. "Irrigation and shifting planting date as climate change adaptation strategies for sorghum," Agricultural Water Management, Elsevier, vol. 255(C).
    18. García-López, J. & García-Ruiz, R. & Domínguez, J. & Lorite, I.J., 2019. "Improving the sustainability of farming systems under semi-arid conditions by enhancing crop management," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Gastaldi, A. & Alvarez Prado, S. & Arduini, J.A. & Miralles, D.J., 2020. "Optimizing wheat (Triticum aestivum L.) management under dry environments: A case study in the West Pampas of Argentina," Agricultural Water Management, Elsevier, vol. 233(C).
    20. Qaisar Saddique & Huanjie Cai & Jiatun Xu & Ali Ajaz & Jianqiang He & Qiang Yu & Yunfei Wang & Hui Chen & Muhammad Imran Khan & De Li Liu & Liang He, 2020. "Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1523-1543, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.