IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v257y2021ics0378377421004200.html
   My bibliography  Save this article

Effects of irrigation strategies and soil properties on the characteristics of deep percolation and crop water requirements for a variable rate irrigation system

Author

Listed:
  • Li, Xiumei
  • Zhao, Weixia
  • Li, Jiusheng
  • Li, Yanfeng

Abstract

Reducing deep percolation (DP) across the field is one of the main objectives of a variable rate irrigation (VRI) system under a semi-humid climate. A study was conducted in the North China Plain during the 2016 and 2017 maize growing seasons in a 1.64-ha one-quadrant plot irrigated by a VRI centre pivot irrigation system. The study was designed to quantify and compare the DP dynamics of three irrigation strategies, including soil water balance (SWB), measured soil water content (SWC), and a combination of SWB and rain forecasting for the next three days (RF). The area irrigated by the VRI system was delineated into three management zones (zones 1, 2, and 3) based on the available soil water holding capacity (AWC). Based on the seasonal cumulative DP, the zone-specific crop coefficient (Kc) for each zone was quantified to enhance the accuracy of the SWB method. The results indicated that high daily DP rates occurred during the initial and end growing seasons as well as following rainfall and irrigation events during the mid-season. The delay of DP after an intermittent large rainfall was observed in both seasons. The cumulative DP in zone 2 with a medium AWC and a uniform soil profile was 36% less than the mean values of DP for zones 1 and 3. Compared to the SWC and SWB methods, the cumulative DP for the RF treatment was reduced by 10% and 36%, respectively. During both seasons, the maximum DP values were observed in zones 2 and 3 under the SWB methods. The SWC method tended to increase the risk of DP for a coarse profile, whereas a lower sandy content soil tended to increase the risk for the SWB method. The mean Kc values derived based on DP for the initial, mid-season, and end of the late season stages were 0.86, 0.73, and 0.91 for zones 1, 2, and 3, respectively, with a 7% reduction compared to the Kc without considering DP. The seasonal crop water requirement determined by zone-specific Kc was reduced by 31 mm compared with the uniform Kc in different management zones. Our results suggested that the RF method exhibited promise for reducing DP, and the zone-specific Kc values were helpful to enhance the water savings of the SWB method for a VRI system.

Suggested Citation

  • Li, Xiumei & Zhao, Weixia & Li, Jiusheng & Li, Yanfeng, 2021. "Effects of irrigation strategies and soil properties on the characteristics of deep percolation and crop water requirements for a variable rate irrigation system," Agricultural Water Management, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:agiwat:v:257:y:2021:i:c:s0378377421004200
    DOI: 10.1016/j.agwat.2021.107143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421004200
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, P. V. & Pal, D. & Varade, S. B. & Kar, S., 1988. "Determining percolation losses of packed clay soil from tensiometer data," Agricultural Water Management, Elsevier, vol. 15(2), pages 189-195, December.
    2. Li, Xiumei & Zhao, Weixia & Li, Jiusheng & Li, Yanfeng, 2019. "Maximizing water productivity of winter wheat by managing zones of variable rate irrigation at different deficit levels," Agricultural Water Management, Elsevier, vol. 216(C), pages 153-163.
    3. Stewart, L.K. & Charlesworth, P.B. & Bristow, K.L. & Thorburn, P.J., 2006. "Estimating deep drainage and nitrate leaching from the root zone under sugarcane using APSIM-SWIM," Agricultural Water Management, Elsevier, vol. 81(3), pages 315-334, March.
    4. Ji, Xi-Bin & Kang, Er-Si & Chen, Ren-Sheng & Zhao, Wen-Zhi & Zhang, Zhi-Hui & Jin, Bo-Wen, 2007. "A mathematical model for simulating water balances in cropped sandy soil with conventional flood irrigation applied," Agricultural Water Management, Elsevier, vol. 87(3), pages 337-346, February.
    5. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2018. "Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil," Agricultural Water Management, Elsevier, vol. 199(C), pages 120-137.
    6. Nijbroek, Ravic & Hoogenboom, Gerrit & Jones, James W., 2003. "Optimizing irrigation management for a spatially variable soybean field," Agricultural Systems, Elsevier, vol. 76(1), pages 359-377, April.
    7. Kang, Shaozhong & Gu, Binjie & Du, Taisheng & Zhang, Jianhua, 2003. "Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region," Agricultural Water Management, Elsevier, vol. 59(3), pages 239-254, April.
    8. Chen, Mengting & Cui, Yuanlai & Wang, Xiaonan & Xie, Hengwang & Liu, Fangping & Luo, Tongyuan & Zheng, Shizong & Luo, Yufeng, 2021. "A reinforcement learning approach to irrigation decision-making for rice using weather forecasts," Agricultural Water Management, Elsevier, vol. 250(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Qianan & Cui, Yuanlai, 2022. "Improvement and testing of ORYZA model water balance modules for alternate wetting and drying irrigation," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Wang, Qunyan & Jia, Yifan & Pang, Zhongjun & Zhou, Jianbin & Scriber, Kevin Emmanuel & Liang, Bin & Chen, Zhujun, 2024. "Intelligent fertigation improves tomato yield and quality and water and nutrient use efficiency in solar greenhouse production," Agricultural Water Management, Elsevier, vol. 298(C).
    3. Li, Maona & Wang, Yunling & Guo, Hui & Ding, Feng & Yan, Haijun, 2023. "Evaluation of variable rate irrigation management in forage crops: Saving water and increasing water productivity," Agricultural Water Management, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irmak, Suat & Sharma, Vasudha & Haghverdi, Amir & Jhala, Amit & Payero, José O. & Drudik, Matthew, 2021. "Maize Crop Coefficients under Variable and Fixed (Uniform) Rate Irrigation and Conventional and Variable Rate Fertilizer Management in Three Soil Types," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    3. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    5. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    6. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    7. Yi, Jun & Li, Huijie & Zhao, Ying & Shao, Ming'an & Zhang, Hailin & Liu, Muxing, 2022. "Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region," Agricultural Water Management, Elsevier, vol. 265(C).
    8. Wang, Weishu & Rong, Yao & Dai, Xiaoqin & Zhang, Chenglong & Wang, Chaozi & Huo, Zailin, 2024. "Variation and attribution of energy distribution for salinized sunflower farmland in arid area," Agricultural Water Management, Elsevier, vol. 297(C).
    9. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    10. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    11. Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2007. "Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China," Agricultural Water Management, Elsevier, vol. 87(3), pages 241-250, February.
    12. Riccardo Lo Bianco & Mark Rieger, 2017. "Transpiration/Evaporation Ratio in Prunus Fremontii and Marianna 2624 over a 4-Day Period of Drought," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 7(4), pages 96-99, December.
    13. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Huang, Ya & Zhang, Zhe & Li, Zhenhua & Dai, Danqiong & Li, Yanping, 2022. "Evaluation of water use efficiency and optimal irrigation quantity of spring maize in Hetao Irrigation District using the Noah-MP Land Surface Model," Agricultural Water Management, Elsevier, vol. 264(C).
    15. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    16. Wang, Yueyue & Horton, Robert & Xue, Xuzhang & Ren, Tusheng, 2021. "Partitioning evapotranspiration by measuring soil water evaporation with heat-pulse sensors and plant transpiration with sap flow gauges," Agricultural Water Management, Elsevier, vol. 252(C).
    17. Lian, Yanhao & Ali, Shahzad & Zhang, Xudong & Wang, Tianlu & Liu, Qi & Jia, Qianmin & Jia, Zhikuan & Han, Qingfang, 2016. "Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas," Agricultural Water Management, Elsevier, vol. 178(C), pages 137-147.
    18. Alberto, Ma. Carmelita R. & Quilty, James R. & Buresh, Roland J. & Wassmann, Reiner & Haidar, Sam & Correa, Teodoro Q. & Sandro, Joseph M., 2014. "Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 1-12.
    19. Thayalakumaran, Thabo & Bristow, Keith L. & Charlesworth, Philip B. & Fass, Thorsten, 2008. "Geochemical conditions in groundwater systems: Implications for the attenuation of agricultural nitrate," Agricultural Water Management, Elsevier, vol. 95(2), pages 103-115, February.
    20. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:257:y:2021:i:c:s0378377421004200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.