IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v256y2021ics0378377421003711.html
   My bibliography  Save this article

Characterization of water use and water balance for the croplands of Kansas using satellite, climate, and irrigation data

Author

Listed:
  • Ji, Lei
  • Senay, Gabriel B.
  • Friedrichs, MacKenzie
  • Schauer, Matthew
  • Boiko, Olena

Abstract

Kansas is one of the most productive agricultural states in the United States, where agricultural irrigation is a primary user of underground and surface water. Because of low precipitation and declining groundwater levels in western and central Kansas, sustainable management of irrigation water resources is a critical issue in the agricultural productivity of the state. The objective of this study is to analyze and characterize the water use and water balance in the croplands of Kansas using satellite observations, meteorological data, and in situ irrigation water use records. We used actual evapotranspiration (ETa), precipitation, soil moisture, and irrigation water use to calculate water balance for Kansas in 2015 at scales of counties, climatic divisions, and groundwater management districts (GMD). The Operational Simplified Surface Energy Balance model was implemented to estimate 30-m resolution ETa. Results showed that the seasonal (May – September) precipitation, soil water storage change, and ETa are 528 mm, 80 mm, and 555 mm, respectively, on average of all croplands in the state. The annual net irrigation water consumption was 293 mm for irrigated croplands, indicating that irrigation water constitutes an substantial portion of the water supply in the state. The total volumetric irrigation water use was 3.24 km3 for all croplands within five GMDs in western and south-central Kansas, while only 0.38 km3 was outside of GMDs. The multiple regression models of ETa against precipitation and irrigation water use were statistically significant with R2 values of 0.71 and 0.87, respectively, at county and climate division scales. Regression models also indicated a higher rate of ETa response to irrigation water use than that to precipitation. Our study demonstrated the spatial patterns of crop water use and water balance in Kansas, which could provide useful information for management of irrigation agriculture and water resources for the state.

Suggested Citation

  • Ji, Lei & Senay, Gabriel B. & Friedrichs, MacKenzie & Schauer, Matthew & Boiko, Olena, 2021. "Characterization of water use and water balance for the croplands of Kansas using satellite, climate, and irrigation data," Agricultural Water Management, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003711
    DOI: 10.1016/j.agwat.2021.107106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421003711
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Velpuri, Naga Manohar & Senay, G. B. & Schauer, M. & Garcia, C. A. & Singh, R. K. & Friedrichs, M. & Kagone, S. & Haynes, J. & Conlon, T., 2020. "Evaluation of hydrologic impact of an irrigation curtailment program using Landsat satellite data," Papers published in Journals (Open Access), International Water Management Institute, pages 34(8):1697-.
    2. Senay, G. B. & Kagone, S. & Velpuri, Naga M., 2020. "Operational global actual evapotranspiration: development, evaluation, and dissemination," Papers published in Journals (Open Access), International Water Management Institute, pages 1-20(7):191.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filippelli, Steven K. & Sloggy, Matthew R. & Vogeler, Jody C. & Manning, Dale T. & Goemans, Christopher & Senay, Gabriel B., 2022. "Remote sensing of field-scale irrigation withdrawals in the central Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wallander, Steven & Hrozencik, Aaron & Aillery, Marcel, 2022. "Irrigation Organizations: Drought Planning and Response," Economic Brief 327233, United States Department of Agriculture, Economic Research Service.
    2. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    3. Wallander, Steven & Hrozencik, Aaron & Aillery, Marcel, 2022. "Irrigation Organizations: Drought Planning and Response," USDA Miscellaneous 316790, United States Department of Agriculture.
    4. Zhu, Wenbin & Yu, Xiaoyu & Wei, Jiaxing & Lv, Aifeng, 2024. "Surface flux equilibrium estimates of evaporative fraction and evapotranspiration at global scale: Accuracy evaluation and performance comparison," Agricultural Water Management, Elsevier, vol. 291(C).
    5. Bawa, Arun & Senay, Gabriel B. & Kumar, Sandeep, 2022. "Satellite remote sensing of crop water use across the Missouri River Basin for 1986–2018 period," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Filippelli, Steven K. & Sloggy, Matthew R. & Vogeler, Jody C. & Manning, Dale T. & Goemans, Christopher & Senay, Gabriel B., 2022. "Remote sensing of field-scale irrigation withdrawals in the central Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.