IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v255y2021ics0378377421002596.html
   My bibliography  Save this article

Fiber yield and quality in cotton under drought: Effects and management

Author

Listed:
  • Ul-Allah, Sami
  • Rehman, Abdul
  • Hussain, Mubshar
  • Farooq, Muhammad

Abstract

Climate change has increased the frequency and intensity of abiotic stresses, especially drought has become the major threat to cotton production worldwide due to long and intense dry spells in many cotton growing areas. Drought stress curtails the photosynthesis, carbohydrate metabolism (starch, sucrose synthesis), activities of several enzymes including vacuolar invertase and sucrose synthase, etc., which are involved in fiber development. Moreover, drought stressed cotton plant has poor assimilate translocation towards reproductive tissues, leading to poor pollen functioning, reproductive failure, and inferior fiber quality. The development of drought tolerant cotton genotypes using transgenes or QTL based molecular breeding approaches has proved effective in improving drought tolerance and fiber quality in cotton. The use of plant growth regulators and mineral elements can also aid in enhancing drought stress tolerance, fiber yield, and quality of cotton through initiating stress response related signaling cascades. Although, effects of drought stress in cotton are well reported, but variations in fiber quality due to the drought are not well explored. During the last few years, progress has been observed to understand these mechanisms which are critically reviewed here. This review highlights the water deficit stress induced habitual, physiological and biochemical changes during the reproductive growth leading to poor development of fiber. It also highlights the effect of drought stress on assimilate accumulation and portioning in reproductive tissues of cotton which finally converts into the fiber. This review will help devise new research to mitigate the negative impact of global climate change on world cotton production and fiber quality.

Suggested Citation

  • Ul-Allah, Sami & Rehman, Abdul & Hussain, Mubshar & Farooq, Muhammad, 2021. "Fiber yield and quality in cotton under drought: Effects and management," Agricultural Water Management, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002596
    DOI: 10.1016/j.agwat.2021.106994
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421002596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyer, Leslie A., 2019. "The World and U.S. Cotton Outlook for 2019/20," Agricultural Outlook Forum 2019 296852, United States Department of Agriculture, Agricultural Outlook Forum, USDA Office of the Chief Economist.
    2. Imran, Muhammad Ali & Ali, Asghar & Ashfaq, Muhammad & Hassan, Sarfraz & Culas, Richard & Ma, Chunbo, 2019. "Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton," Land Use Policy, Elsevier, vol. 88(C).
    3. Feike, Til & Khor, Ling Yee & Mamitimin, Yusuyunjiang & Ha, Nan & Li, Lin & Abdusalih, Nurbay & Xiao, Haifeng & Doluschitz, Reiner, 2017. "Determinants of cotton farmers’ irrigation water management in arid Northwestern China," Agricultural Water Management, Elsevier, vol. 187(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Yue & Wu, Xiaodi & Liu, Jian & Zhang, Jinzhu & Song, Libing & Zhu, Yan & Li, Wenhao & Wang, Zhenhua, 2023. "Effects of drip irrigation timing and water temperature on soil conditions, cotton phenological period, and fiber quality under plastic film mulching," Agricultural Water Management, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Linfei & Khan, Sufyan Ullah & Guo, Chenhao & Huang, Yanfen & Xia, Xianli, 2022. "Non-agricultural labor transfer, factor allocation and farmland yield: Evidence from the part-time peasants in Loess Plateau region of Northwest China," Land Use Policy, Elsevier, vol. 120(C).
    2. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    3. Honghong Ma & Tao Yang & Xinxiang Niu & Zhenan Hou & Xingwang Ma, 2021. "Sound Water and Nitrogen Management Decreases Nitrogen Losses from a Drip-Fertigated Cotton Field in Northwestern China," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    4. Masoud Yazdanpanah & Kurt Klein & Tahereh Zobeidi & Stefan Sieber & Katharina Löhr, 2022. "Why Have Economic Incentives Failed to Convince Farmers to Adopt Drip Irrigation in Southwestern Iran?," Sustainability, MDPI, vol. 14(4), pages 1-15, February.
    5. Falk, Thomas & Spangenberg, Joachim H. & Siegmund-Schultze, Marianna & Kobbe, Susanne & Feike, Til & Kuebler, Daniel & Settele, Josef & Vorlaufer, Tobias, 2018. "Identifying governance challenges in ecosystem services management – Conceptual considerations and comparison of global forest cases," Ecosystem Services, Elsevier, vol. 32(PB), pages 193-203.
    6. Xu, Zhan & Liang, Zhengyuan & Cheng, Jiali & Groot, Jeroen C.J. & Zhang, Chaochun & Cong, Wen-Feng & Zhang, Fusuo & van der Werf, Wopke, 2024. "Comparing the sustainability of smallholder and business farms in the North China Plain; a case study in Quzhou," Agricultural Systems, Elsevier, vol. 216(C).
    7. Pan Rao & Xiaojin Liu & Shubin Zhu & Xiaolan Kang & Xinglei Zhao & Fangting Xie, 2022. "Does the Application of ICTs Improve the Efficiency of Agricultural Carbon Reduction? Evidence from Broadband Adoption in Rural China," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    8. Sajith, Gouri & Srinivas, Rallapalli & Golberg, Alexander & Magner, Joe, 2022. "Bio-inspired and artificial intelligence enabled hydro-economic model for diversified agricultural management," Agricultural Water Management, Elsevier, vol. 269(C).
    9. Liuyang Yao & Minjuan Zhao & Tao Xu, 2017. "China’s Water-Saving Irrigation Management System: Policy, Implementation, and Challenge," Sustainability, MDPI, vol. 9(12), pages 1-17, December.
    10. Marta García-Mollá & Rosa Puertas & Carles Sanchis-Ibor, 2021. "Application of Data Envelopment Analysis to Evaluate Investments in the Modernization of Collective Management Irrigation Systems in Valencia (Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 5011-5027, November.
    11. Guo, Leilei & Wang, Zaimin & Šimůnek, Jirka & He, Yujiang & Muhamma, Rizwan, 2023. "Optimizing the strategies of mulched brackish drip irrigation under a shallow water table in Xinjiang, China, using HYDRUS-3D," Agricultural Water Management, Elsevier, vol. 283(C).
    12. Qin Zhang & Jing Shao & Jianmin Qiao & Qian Cao & Haimeng Liu, 2024. "Coupling Relationships and Driving Mechanisms of Water–Energy–Food in China from the Perspective of Supply and Demand Security," Land, MDPI, vol. 13(10), pages 1-22, October.
    13. Jordán, Cristian & Speelman, Stijn, 2020. "On-farm adoption of irrigation technologies in two irrigated valleys in Central Chile: The effect of relative abundance of water resources," Agricultural Water Management, Elsevier, vol. 236(C).
    14. Chengmin Li & Haoyu Deng & Guoxin Yu & Rong Kong & Jian Liu, 2024. "Impact Effects of Cooperative Participation on the Adoption Behavior of Green Production Technologies by Cotton Farmers and the Driving Mechanisms," Agriculture, MDPI, vol. 14(2), pages 1-25, January.
    15. Yusheng Hou & Zhenhua Wang & Huaijun Ding & Wenhao Li & Yue Wen & Jifeng Zhang & Yunqing Dou, 2019. "Evaluation of Suitable Amount of Water and Fertilizer for Mature Grapes in Drip Irrigation in Extreme Arid Regions," Sustainability, MDPI, vol. 11(7), pages 1-23, April.
    16. Brar, Harjeet Singh & Singh, Pritpal, 2022. "Pre-and post-sowing irrigation scheduling impacts on crop phenology and water productivity of cotton (Gossypium hirsutum L.) in sub-tropical north-western India," Agricultural Water Management, Elsevier, vol. 274(C).
    17. Adiqa Kausar Kiani & Asif Sardar & Wasim Ullah Khan & Yigang He & Abdulbaki Bilgic & Yasemin Kuslu & Muhammad Asif Zahoor Raja, 2021. "Role of Agricultural Diversification in Improving Resilience to Climate Change: An Empirical Analysis with Gaussian Paradigm," Sustainability, MDPI, vol. 13(17), pages 1-15, August.
    18. Asif Sardar & Adiqa K. Kiani & Yasemin Kuslu, 2021. "Does adoption of climate-smart agriculture (CSA) practices improve farmers’ crop income? Assessing the determinants and its impacts in Punjab province, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10119-10140, July.
    19. Yixin Hu & Mansoor Ahmed Koondhar & Rong Kong, 2023. "From Traditional to Smart: Exploring the Effects of Smart Agriculture on Green Production Technology Diversity in Family Farms," Agriculture, MDPI, vol. 13(6), pages 1-19, June.
    20. Alauddin, Mohammad & Rashid Sarker, Md. Abdur & Islam, Zeenatul & Tisdell, Clement, 2020. "Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations," Land Use Policy, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.