IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v243y2021ics0378377420307228.html
   My bibliography  Save this article

Managing irrigation under pressure: How supply chain demands and environmental objectives drive imbalance in agricultural resilience to water shortages

Author

Listed:
  • Sutcliffe, Chloe
  • Knox, Jerry
  • Hess, Tim

Abstract

Food production systems worldwide are increasingly exposed to water shortage shocks. Social-ecological resilience theory provides insights into the qualities which confer production systems with the capacity to absorb shocks and persist, undertake adaptations and ultimately achieve desirable transformations. Combining findings from the analysis of a set of 15 semi-structured interviews and 92 survey responses from growers in the UK, this paper uses resilience theory to explore the factors affecting exposure to the risk of water shortages, and management responses, within outdoor field vegetable production systems that depend on supplemental irrigation. The findings confirm that growers predominantly aim to build resilience by seeking to maintain a buffer or ‘headroom’ in their water resources to minimise the possibility that a shortage will disrupt their output of marketable produce and/ or lead to financial loss. This buffering strategy confers robustness by increasing system redundancy (availability of spare resources). But building-in redundancy conflicts with regulatory and supply chain pressures to maximise water and production efficiency respectively. Whilst stability of supply to consumers is, for the most-part, achieved, the discrepant pursuits of robustness and efficiency lock agricultural systems into increasingly rigid production and sales pathways, limiting capacities for adaptation and transformation - dimensions of resilience which permit successful system evolution in the context of more extreme shocks and stresses.

Suggested Citation

  • Sutcliffe, Chloe & Knox, Jerry & Hess, Tim, 2021. "Managing irrigation under pressure: How supply chain demands and environmental objectives drive imbalance in agricultural resilience to water shortages," Agricultural Water Management, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420307228
    DOI: 10.1016/j.agwat.2020.106484
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420307228
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ilaria Giannoccaro & Giovanni F. Massari & Giuseppe Carbone, 2018. "Team Resilience in Complex and Turbulent Environments: The Effect of Size and Density of Social Interactions," Complexity, Hindawi, vol. 2018, pages 1-11, July.
    2. Helfgott, Ariella, 2018. "Operationalising systemic resilience," European Journal of Operational Research, Elsevier, vol. 268(3), pages 852-864.
    3. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    4. Rey, D. & Holman, I.P. & Daccache, A. & Morris, J. & Weatherhead, E.K. & Knox, J.W., 2016. "Modelling and mapping the economic value of supplemental irrigation in a humid climate," Agricultural Water Management, Elsevier, vol. 173(C), pages 13-22.
    5. Sarah Rotz & Evan Fraser, 2015. "Resilience and the industrial food system: analyzing the impacts of agricultural industrialization on food system vulnerability," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(3), pages 459-473, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baccar, Mariem & Raynal, Hélène & Sekhar, Muddu & Bergez, Jacques-Eric & Willaume, Magali & Casel, Pierre & Giriraj, P. & Murthy, Sanjeeva & Ruiz, Laurent, 2023. "Dynamics of crop category choices reveal strategies and tactics used by smallholder farmers in India to cope with unreliable water availability," Agricultural Systems, Elsevier, vol. 211(C).
    2. Dalal Aassouli & Ayodele Akande & Ray Jureidini, 2023. "Comparative Analysis of Sustainable Food Governance and the Alignment of Food Security Policies to Sustainable Development: A Case Study of OIC Countries," Sustainability, MDPI, vol. 15(22), pages 1-27, November.
    3. Malherbe, Willem & Biggs, Reinette & Sitas, Nadia, 2024. "Comparing apples and pears: Linking capitals and capacities to assess the resilience of commercial farming operations," Agricultural Systems, Elsevier, vol. 217(C).
    4. Sarkar, Mitali & Dey, Bikash Koli & Ganguly, Baishakhi & Saxena, Neha & Yadav, Dharmendra & Sarkar, Biswajit, 2023. "The impact of information sharing and bullwhip effects on improving consumer services in dual-channel retailing," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    5. Lankford, Bruce A., 2023. "Resolving the paradoxes of irrigation efficiency: Irrigated systems accounting analyses depletion-based water conservation for reallocation," Agricultural Water Management, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bier, Vicki & Gutfraind, Alexander, 2019. "Risk analysis beyond vulnerability and resilience – characterizing the defensibility of critical systems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 626-636.
    2. Lauri Ahopelto & Noora Veijalainen & Joseph H. A. Guillaume & Marko Keskinen & Mika Marttunen & Olli Varis, 2019. "Can There be Water Scarcity with Abundance of Water? Analyzing Water Stress during a Severe Drought in Finland," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    3. Pelai, Ricardo & Hagerman, Shannon M. & Kozak, Robert, 2020. "Biotechnologies in agriculture and forestry: Governance insights from a comparative systematic review of barriers and recommendations," Forest Policy and Economics, Elsevier, vol. 117(C).
    4. Rahmani, Javad & Danesh-Yazdi, Mohammad, 2022. "Quantifying the impacts of agricultural alteration and climate change on the water cycle dynamics in a headwater catchment of Lake Urmia Basin," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Badir S. Alsaeed & Dexter V. L. Hunt & Soroosh Sharifi, 2022. "Sustainable Water Resources Management Assessment Frameworks (SWRM-AF) for Arid and Semi-Arid Regions: A Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    6. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    7. Liu, Jing & Hertel, Thomas & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz & Grogan, Danielle & Frolking, Steve, 2016. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use," Conference papers 332691, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Mumuh Muhsin Z. & Nina Herlina & Miftahul Falah & Etty Saringendyanti & Kunto Sofianto & Norlaila Md Zin, 2021. "Impact of Climate Change on Agriculture Sector of Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 138-144.
    9. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    10. Ozgul Calicioglu & Alessandro Flammini & Stefania Bracco & Lorenzo Bellù & Ralph Sims, 2019. "The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    11. Thangatur Sukumar Hariharan & L. S. Ganesh & Vijayalakshmi Venkatraman & Piyush Sharma & Vidyasagar Potdar, 2022. "Morphological Analysis of general system–environment complexes: Representation and application," Systems Research and Behavioral Science, Wiley Blackwell, vol. 39(2), pages 218-240, March.
    12. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    13. Meilin Ma & Jayson L. Lusk, 2022. "Concentration and Resilience in the US Meat Supply Chains," NBER Chapters, in: Risks in Agricultural Supply Chains, National Bureau of Economic Research, Inc.
    14. Giuseppe Lucio Gaeta & Stefano Ghinoi & Matteo Masotti & Francesco Silvestri, 2021. "Economics research and climate change. A Scopus-based bibliometric investigation," SEEDS Working Papers 0321, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Apr 2021.
    15. Jiang, Qiang & Grafton, R. Quentin, 2012. "Economic effects of climate change in the Murray–Darling Basin, Australia," Agricultural Systems, Elsevier, vol. 110(C), pages 10-16.
    16. Walsh, Mike & Kittler, Markus G. & Throp, Maria & Shaw, Fraser, 2019. "Designing a recovery-orientated system of care: A community operational research perspective," European Journal of Operational Research, Elsevier, vol. 272(2), pages 595-607.
    17. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    18. Giannoccaro, Ilaria & Galesic, Mirta & Massari, Giovanni Francesco & Barkoczi, Daniel & Carbone, Giuseppe, 2020. "Search behavior of individuals working in teams: A behavioral study on complex landscapes," Journal of Business Research, Elsevier, vol. 118(C), pages 507-516.
    19. Sandra Ricart & Anna Ribas & David Pavón, 2016. "Qualifying irrigation system sustainability by means of stakeholder perceptions and concerns: lessons from the Segarra‐Garrigues Canal, Spain," Natural Resources Forum, Blackwell Publishing, vol. 40(1-2), pages 77-90, February.
    20. Jiayu Kang & Xuejun Duan & Ruxian Yun, 2023. "The Impact of Urbanization on Food Security: A Case Study of Jiangsu Province," Land, MDPI, vol. 12(9), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420307228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.