IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v225y2019ics0378377419311291.html
   My bibliography  Save this article

Physiological and yield responses of Aloe vera plant to biofertilizers under different irrigation regimes

Author

Listed:
  • Khajeeyan, Rahil
  • Salehi, Amin
  • Dehnavi, Mohsen Movahhedi
  • Farajee, Hooshang
  • Kohanmoo, Mohammad Amin

Abstract

Aloe vera (Aloe barbadensis Miller) is one of the most important medicinal plants with high resistance to drought, whose tolerability can be promoted using biofertilizers. The purpose of this study was to determine the influence of biofertilizers on some physiological traits and leaf fresh weight of Aloe vera under different irrigation regimes. The experiments were conducted in a research field in Iran (Boushehr with warm and dry climate) during 2016-2018. Irrigation treatments included 25, 50, 75 and 100% of water requirement and the applied biofertilizers treatments were mycorrhizal fungi (MF) (Glomus mosae), phosphate solubilizing bacteria (PSB) (including Pseudomonas putida strain P13 and Pantoea agglomerans strain P5), MF + PSB, and control (without any biofertilizers). The results of three harvests showed advantages of biofertilizers (specially the combination of MF and PSB) utilization on all determined factors such as total chlorophyll and carotenoid contents, leaf proline, and soluble sugar amount. The highest yield was obtained in full irrigation, but due to the absence of significant difference in leaf fresh weight of this treatment with 50% irrigation, as well as the water deficit in Boushehr, located in semi-arid region, 50% irrigation and combination of MF and PSB biofertilizers is recommended. Therefore, Aloe vera is an acceptable option for planting in Boushehr province according to its scant water consumption.

Suggested Citation

  • Khajeeyan, Rahil & Salehi, Amin & Dehnavi, Mohsen Movahhedi & Farajee, Hooshang & Kohanmoo, Mohammad Amin, 2019. "Physiological and yield responses of Aloe vera plant to biofertilizers under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:agiwat:v:225:y:2019:i:c:s0378377419311291
    DOI: 10.1016/j.agwat.2019.105768
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419311291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hazrati, Saeid & Tahmasebi-Sarvestani, Zeinolabedin & Mokhtassi-Bidgoli, Ali & Modarres-Sanavy, Seyed Ali Mohammad & Mohammadi, Hamid & Nicola, Silvana, 2017. "Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L," Agricultural Water Management, Elsevier, vol. 181(C), pages 66-72.
    2. Delatorre-Herrera, J. & Delfino, I. & Salinas, C. & Silva, H. & Cardemil, Liliana, 2010. "Irrigation restriction effects on water use efficiency and osmotic adjustment in Aloe Vera plants (Aloe barbadensis Miller)," Agricultural Water Management, Elsevier, vol. 97(10), pages 1564-1570, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelos Liontakis & Alexandra Sintori & Irene Tzouramani, 2021. "The Role of the Start-Up Aid for Young Farmers in the Adoption of Innovative Agricultural Activities: The Case of Aloe Vera," Agriculture, MDPI, vol. 11(4), pages 1-24, April.
    2. Wang, Xiao-Ling & Sun, Run-Hong & Wu, Di & Qi, Lin & Liu, Yu-Hua & Shi, Jiang & Li, Xue-Lin & Song, Peng & Zhang, Li-Xia, 2021. "Increasing corn compensatory growth upon post-drought rewatering using ammonia-oxidising bacterial strain inoculation," Agricultural Water Management, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Delgado, Mayra & Minjares-Fuentes, Rafael & Mota-Ituarte, María & Pedroza-Sandoval, Aurelio & Comas-Serra, Francesca & Quezada-Rivera, Jesús Josafath & Sáenz-Esqueda, Ángeles & Femenia, Anton, 2023. "Joint water and salinity stresses increase the bioactive compounds of Aloe vera (Aloe barbadensis Miller) gel enhancing its related functional properties," Agricultural Water Management, Elsevier, vol. 285(C).
    2. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Valeria Medoro & Giacomo Ferretti & Giulio Galamini & Annalisa Rotondi & Lucia Morrone & Barbara Faccini & Massimo Coltorti, 2022. "Reducing Nitrogen Fertilization in Olive Growing by the Use of Natural Chabazite-Zeolitite as Soil Improver," Land, MDPI, vol. 11(9), pages 1-20, September.
    4. Zheng, Junlin & Chen, Taotao & Wu, Qi & Yu, Jianming & Chen, Wei & Chen, Yinglong & Siddique, Kadambot H.M. & Meng, Weizhong & Chi, Daocai & Xia, Guimin, 2018. "Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress," Agricultural Water Management, Elsevier, vol. 206(C), pages 241-251.
    5. Claudia Belviso & Antonio Satriani & Stella Lovelli & Alessandro Comegna & Antonio Coppola & Giovanna Dragonetti & Francesco Cavalcante & Anna Rita Rivelli, 2022. "Impact of Zeolite from Coal Fly Ash on Soil Hydrophysical Properties and Plant Growth," Agriculture, MDPI, vol. 12(3), pages 1-13, March.
    6. Satriani, A. & Catalano, M. & Scalcione, E., 2018. "The role of superabsorbent hydrogel in bean crop cultivation under deficit irrigation conditions: A case-study in Southern Italy," Agricultural Water Management, Elsevier, vol. 195(C), pages 114-119.
    7. Li, Yangyang & Liu, Ningning & Fan, Hua & Su, Jixia & Fei, Cong & Wang, Kaiyong & Ma, Fuyu & Kisekka, Isaya, 2019. "Effects of deficit irrigation on photosynthesis, photosynthate allocation, and water use efficiency of sugar beet," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    8. Hazrati, Saeid & Tahmasebi-Sarvestani, Zeinolabedin & Mokhtassi-Bidgoli, Ali & Modarres-Sanavy, Seyed Ali Mohammad & Mohammadi, Hamid & Nicola, Silvana, 2017. "Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L," Agricultural Water Management, Elsevier, vol. 181(C), pages 66-72.
    9. Puangbut, Darunee & Jogloy, Sanun & Vorasoot, Nimitr & Srijaranai, Supalax & Holbrook, Corley Carl & Patanothai, Aran, 2015. "Variation of inulin content, inulin yield and water use efficiency for inulin yield in Jerusalem artichoke genotypes under different water regimes," Agricultural Water Management, Elsevier, vol. 152(C), pages 142-150.
    10. Sun, Yidi & He, Zhenli & Wu, Qi & Zheng, Junlin & Li, Yinghao & Wang, Yanzhi & Chen, Taotao & Chi, Daocai, 2020. "Zeolite amendment enhances rice production, nitrogen accumulation and translocation in wetting and drying irrigation paddy field," Agricultural Water Management, Elsevier, vol. 235(C).
    11. Mehmood ul Hassan & Syed Tanveer Shah & Abdul Basit & Wafaa M. Hikal & Mushtaq Ahmad Khan & Waleed Khan & Kirill G. Tkachenko & Faiçal Brini & Hussein A. H. Said-Al Ahl, 2024. "Improving Wheat Yield with Zeolite and Tillage Practices under Rain-Fed Conditions," Land, MDPI, vol. 13(8), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:225:y:2019:i:c:s0378377419311291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.