IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v225y2019ics0378377419308315.html
   My bibliography  Save this article

Forecasting corn yield at the farm level in Brazil based on the FAO-66 approach and soil-adjusted vegetation index (SAVI)

Author

Listed:
  • Venancio, Luan Peroni
  • Mantovani, Everardo Chartuni
  • do Amaral, Cibele Hummel
  • Usher Neale, Christopher Michael
  • Gonçalves, Ivo Zution
  • Filgueiras, Roberto
  • Campos, Isidro

Abstract

Crop yield forecasting at the field level is essential for decision-making and the prediction of agricultural economic returns for farmers. Thus, this study evaluated the performance of a methodology for corn yield prediction in irrigated fields in the western region of the state of Bahia, Brazil. This methodology integrates a time series of the basal crop coefficient (Kcb) estimated from the soil-adjusted vegetation index (SAVI) into a simple model based on the water productivity as presented in the FAO-66 manual. In this context, an extensive field-level dataset of 52 center pivot fields of cultivated with corn was used for four consecutive growing seasons (2013 to 2016). Surface reflectance images from the Landsat series were used to calculate the SAVI. The methodology performance was assessed through RMSE, RRMSE, MBE, MAE, and r². The results revealed that the difference between the predicted and actual yield values ranged between −12.2% and 18.8% but that the majority of the estimates remained between −10% and 10%, considering that a single harvest index (HI) was used for the hybrids cultivated in the growing seasons of 2014, 2015 and 2016. After a new reanalysis (by grouping the similar hybrids and using specific HIs), the performance of the predictions increased, especially for the Pioneer hybrids; the majority of the differences between the predicted yield values and the measured yield values remained between -5% and 5%. The results of this research showed that it is essential to work with different HIs when considering different hybrids and years under different weather conditions.

Suggested Citation

  • Venancio, Luan Peroni & Mantovani, Everardo Chartuni & do Amaral, Cibele Hummel & Usher Neale, Christopher Michael & Gonçalves, Ivo Zution & Filgueiras, Roberto & Campos, Isidro, 2019. "Forecasting corn yield at the farm level in Brazil based on the FAO-66 approach and soil-adjusted vegetation index (SAVI)," Agricultural Water Management, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:agiwat:v:225:y:2019:i:c:s0378377419308315
    DOI: 10.1016/j.agwat.2019.105779
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419308315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Razzaghi, Fatemeh & Zhou, Zhenjiang & Andersen, Mathias N. & Plauborg, Finn, 2017. "Simulation of potato yield in temperate condition by the AquaCrop model," Agricultural Water Management, Elsevier, vol. 191(C), pages 113-123.
    2. Campos, Isidro & Neale, Christopher M.U. & Suyker, Andrew E. & Arkebauer, Timothy J. & Gonçalves, Ivo Z., 2017. "Reflectance-based crop coefficients REDUX: For operational evapotranspiration estimates in the age of high producing hybrid varieties," Agricultural Water Management, Elsevier, vol. 187(C), pages 140-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rubaiya Binte Mostafiz & Ryozo Noguchi & Tofael Ahamed, 2021. "Calorie-based seasonal multicrop land suitability analysis for regional food nutrition security in Bangladesh," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 757-795, October.
    2. Rubaiya Binte Mostafiz & Ryozo Noguchi & Tofael Ahamed, 2021. "Agricultural Land Suitability Assessment Using Satellite Remote Sensing-Derived Soil-Vegetation Indices," Land, MDPI, vol. 10(2), pages 1-26, February.
    3. Bispo, R.C. & Hernandez, F.B.T. & Gonçalves, I.Z. & Neale, C.M.U. & Teixeira, A.H.C., 2022. "Remote sensing based evapotranspiration modeling for sugarcane in Brazil using a hybrid approach," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Peroni Venancio, Luan & Chartuni Mantovani, Everardo & do Amaral, Cibele Hummel & Usher Neale, Christopher Michael & Zution Gonçalves, Ivo & Filgueiras, Roberto & Coelho Eugenio, Fernando, 2020. "Potential of using spectral vegetation indices for corn green biomass estimation based on their relationship with the photosynthetic vegetation sub-pixel fraction," Agricultural Water Management, Elsevier, vol. 236(C).
    5. Gonçalves, I.Z. & Ruhoff, A. & Laipelt, L. & Bispo, R.C. & Hernandez, F.B.T. & Neale, C.M.U. & Teixeira, A.H.C. & Marin, F.R., 2022. "Remote sensing-based evapotranspiration modeling using geeSEBAL for sugarcane irrigation management in Brazil," Agricultural Water Management, Elsevier, vol. 274(C).
    6. Filgueiras, Roberto & Almeida, Thomé Simpliciano & Mantovani, Everardo Chartuni & Dias, Santos Henrique Brant & Fernandes-Filho, Elpídio Inácio & da Cunha, Fernando França & Venancio, Luan Peroni, 2020. "Soil water content and actual evapotranspiration predictions using regression algorithms and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Gonçalves, Ivo Zution & Mekonnen, Mesfin M. & Neale, Christopher M.U. & Campos, Isidro & Neale, Michael R., 2020. "Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska," Agricultural Water Management, Elsevier, vol. 228(C).
    3. Bispo, R.C. & Hernandez, F.B.T. & Gonçalves, I.Z. & Neale, C.M.U. & Teixeira, A.H.C., 2022. "Remote sensing based evapotranspiration modeling for sugarcane in Brazil using a hybrid approach," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Barker, J. Burdette & Heeren, Derek M. & Neale, Christopher M.U. & Rudnick, Daran R., 2018. "Evaluation of variable rate irrigation using a remote-sensing-based model," Agricultural Water Management, Elsevier, vol. 203(C), pages 63-74.
    6. Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
    7. Dadrasi, Amir & Torabi, Benjamin & Rahimi, Asghar & Soltani, Afshin & Zeinali, Ebrahim, 2022. "Modeling Potential production and yield gap of potato using modelling and GIS approaches," Ecological Modelling, Elsevier, vol. 471(C).
    8. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    9. Nyathi, M.K. & van Halsema, G.E. & Annandale, J.G. & Struik, P.C., 2018. "Calibration and validation of the AquaCrop model for repeatedly harvested leafy vegetables grown under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 208(C), pages 107-119.
    10. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    11. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    12. Ahmadzadeh Araji, Hamidreza & Wayayok, Aimrun & Massah Bavani, Alireza & Amiri, Ebrahim & Abdullah, Ahmad Fikri & Daneshian, Jahanfar & Teh, C.B.S., 2018. "Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models," Agricultural Water Management, Elsevier, vol. 205(C), pages 63-71.
    13. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
    14. Bhatti, Sandeep & Heeren, Derek M. & Evett, Steven R. & O’Shaughnessy, Susan A. & Rudnick, Daran R. & Franz, Trenton E. & Ge, Yufeng & Neale, Christopher M.U., 2022. "Crop response to thermal stress without yield loss in irrigated maize and soybean in Nebraska," Agricultural Water Management, Elsevier, vol. 274(C).
    15. Tsakmakis, I.D. & Kokkos, N.P. & Gikas, G.D. & Pisinaras, V. & Hatzigiannakis, E. & Arampatzis, G. & Sylaios, G.K., 2019. "Evaluation of AquaCrop model simulations of cotton growth under deficit irrigation with an emphasis on root growth and water extraction patterns," Agricultural Water Management, Elsevier, vol. 213(C), pages 419-432.
    16. Kelechi Igwe & Vaishali Sharda & Trevor Hefley, 2023. "Evaluating the Impact of Future Seasonal Climate Extremes on Crop Evapotranspiration of Maize in Western Kansas Using a Machine Learning Approach," Land, MDPI, vol. 12(8), pages 1-26, July.
    17. Xu, Junzeng & Bai, Wenhuan & Li, Yawei & Wang, Haiyu & Yang, Shihong & Wei, Zheng, 2019. "Modeling rice development and field water balance using AquaCrop model under drying-wetting cycle condition in eastern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 289-297.
    18. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    19. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
    20. Bhatti, Sandeep & Heeren, Derek M. & Barker, J. Burdette & Neale, Christopher M.U. & Woldt, Wayne E. & Maguire, Mitchell S. & Rudnick, Daran R., 2020. "Site-specific irrigation management in a sub-humid climate using a spatial evapotranspiration model with satellite and airborne imagery," Agricultural Water Management, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:225:y:2019:i:c:s0378377419308315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.