IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v223y2019ic24.html
   My bibliography  Save this article

Comparing evapotranspiration rates of tall fescue and bermudagrass in North Carolina

Author

Listed:
  • Pinnix, Garland D.
  • Miller, Grady L.

Abstract

Increasing water conservation efforts across landscapes necessitate the establishment of turfgrasses that require less water to sustain functionality. Therefore, it is important to consider concurrent water use potential of popular grass species such as tall fescue (Festuca arundinacea Schreb.) and hybrid bermudagrass [Cynodon dactylon (L.) Pers. × Cynodon transvaalensis Burtt-Davy]. The primary objective of this field study was to compare water use characteristics of ‘TifTuf’ a recently released bermudagrass cultivar with reported drought tolerance with a commonly planted tall fescue/bluegrass mix in North Carolina. A secondary objective was to quantify minimum irrigation requirements during establishment from sod when planted during spring and summer. Direct measurements of actual evapotranspiration (ETa) were made through weighing of non-water stressed lysimeters planted with ‘Triple Threat’ tall fescue and TifTuf hybrid bermudagrass. Actual evapotranspiration rates during the first 14 days after planting (DAP) were 3.3 and 4.3 mm d−1 for bermudagrass and tall fescue, respectively, averaged across spring plantings. Tall fescue ETa 14 DAP was no different during summer establishment, while bermudagrass ETa increased to 4.3 mm d−1. After 14 DAP, cumulative bermudagrass ETa was 44% less than tall fescue when established in spring. Cumulative bermudagrass ETa was similar to tall fescue (3% less) following summer establishment. Both grasses provided acceptable turf quality (TQ ≥ 6), when planted during spring, unlike tall fescue which resulted in unacceptable TQ following summer establishment. Results indicate the use of TifTuf bermudagrass can provide acceptable quality in the landscape while significantly reducing turfgrass water use compared to Triple Threat tall fescue when adapted to localized conditions.

Suggested Citation

  • Pinnix, Garland D. & Miller, Grady L., 2019. "Comparing evapotranspiration rates of tall fescue and bermudagrass in North Carolina," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
  • Handle: RePEc:eee:agiwat:v:223:y:2019:i:c:24
    DOI: 10.1016/j.agwat.2019.105725
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419307838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wherley, B. & Dukes, M.D. & Cathey, S. & Miller, G. & Sinclair, T., 2015. "Consumptive water use and crop coefficients for warm-season turfgrass species in the Southeastern United States," Agricultural Water Management, Elsevier, vol. 156(C), pages 10-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haghverdi, Amir & Singh, Amninder & Sapkota, Anish & Reiter, Maggie & Ghodsi, Somayeh, 2021. "Developing irrigation water conservation strategies for hybrid bermudagrass using an evapotranspiration-based smart irrigation controller in inland southern California," Agricultural Water Management, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:223:y:2019:i:c:24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.